簡易檢索 / 詳目顯示

研究生: 鍾佩茹
Chung, Pei-Ju
論文名稱: 以碘離子輔助植晶法合成菱形十二面體演繹至八面體的金奈米晶體及探討不同晶面的催化活性
Seed-Mediated and Iodide-Assisted Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Rhombic Dodecahedral to Octahedral Structures and Their Facet-Dependent Catalytic Activity
指導教授: 黃暄益
Huang, Michael H.
口試委員: 王素蘭
裘性天
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 87
中文關鍵詞: 奈米金自組裝形狀演譯晶面催化八面體菱形十二面體
外文關鍵詞: gold, growth mechanism, nanostructures, self-assembly, shape evolution, facet-dependent
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Until recently, only the morphological evolution for gold nanocrystals from cubic to octahedral structures have been demonstrated. Previously we have developed a facile seed-mediated method for the synthesis of gold nanocrystals from cubic to trisoctahedral and rhombic dodecahedral structures in aqueous solution at room temperature. Cetyltrimethylammonium chloride (CTAC) surfactant, a small amount of NaBr, and varying amounts of reducing agent added were keys to this systematic shape control.
    In Chapter 1 we present the development of a seed-mediated and iodide-assisted method to the synthesis of monodisperse gold nanocrystals with systematic shape evolution from rhombic dodecahedral to octahedral structures. Particle growth is complete in 15 min at room temperature, so the process is fast and energy-efficient. By progressively increasing the amount of KI used in a growth solution while keeping the amount of ascorbic acid added constant, nanocrystals with morphologies varying from rhombic dodecahedral to rhombicuboctahedral, edge- and corner-truncated octahedral, corner-truncated octahedral, and octahedral structures were synthesized. The nanocrystals are monodisperse in size and readily form self-assembled structures on substrates. By simply adjusting the volume of gold seed solution added to a growth solution, particle sizes of the octahedral gold nanocrystals can be tuned with average opposite corner-to-corner distances of 42, 48, 54, 60, 68, 93, 107, and 125 nm. In the presence of HAuCl4, iodide may act as a reducing agent. Variation of its amount in the solution may slightly modulate the reduction rate and affect the final crystal morphology. Intermediate structures collected during crystal growth reveal the presence of many twisted structures surrounding a developing nanocrystal core. This nanocrystal growth mechanism and the less important role of surfactant in directing the polyhedral nanocrystal morphology is discussed.
    In Chapter 2 we describe the facet-dependent catalytic activity of gold nanocrystals with cubic, rhombic dodecahedral and octahedral structures. Their surfaces are bounded by {100}, {110} and {111} facets respectively, which are the three important low-index planes in a fcc system. We utilized these gold nanocrystals as a catalysts and NaBH4 as a reducing agent to reduce 4-nitroaniline to p-phenylene diamine (benzene-1,4-diamine). We used UV-vis spectroscopy to characterize the rate of reactant consumption and product formation. By carrying out reaction at different temperatires, rate constants (k) and activation energies (Ea) were determined. Surface energies (γ) reported before and the binding energies obtained from density functional theory (DFT) calculations are used to explain the observed catalytic results. We conclude that the rate of catalytic activity is rhombic dodecahedra > cubes > octahedra.


    TABLE OF CONTENTS Chinese Abstract i English Abstract iii Acknowledgement v Table of contents vii List of Figures x List of Tables xv CHAPTER 1 Seed-Mediated and Iodide-Assisted Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Rhombic Dodecahedral to Octahedral Structures 1.1 The Shape-Controlled Growth of Nanocrystals with Systemic Shape Evolution 1 1.1.1 Methods for the Synthesis of Shape-Controlled Metal Nanocrystals 5 1.1.2 Size-Controlled Gold Nanocrystals by Hydrothermal Methods 5 1.1.3 Seeding Growth and Polymer-Mediated Polyol Methods 6 1.1.4 Synthesis of Gold Nanocrystals with Systematic Shape Evolution 8 1.1.5 Synthesis of Palladium Nanocrystals with Shape Evolution 9 1.1.6 Synthesis of Pt-Pd Core‒Shell Nanocrystals 10 1.2 Introduction of This Thesis Study 14 1.3 Experimental Section 17 1.3.1 Chemicals 17 1.3.2 Preparation of Gold Seed Solution 17 1.3.3 Synthesis of Gold Nanocrystals with Shapes Varying from Rhombic Dodecahedral to Octahedral Structures 17 1.3.4 Synthesis of Octahedral Gold Nanocrystals with Controllable Sizes from 42 to 125 nm 19 1.3.5 Instrumentation 20 1.4 Results and Discussion 21 1.5 Conclusion 47 1.6 References 48 CHAPTER 2 Facet-Dependent Catalytic Activity of Gold Nanocrystals toward Nitroaniline Reduction 2.1 The Facet-Dependent Properties of Different Nanocrystals 51 2.1.1 The Electrocatalytic Activity of Au‒Pd core-shell nanocrystals 51 2.1.2 The Photocatalytic Activity of Cu2O Nnanocrystals 55 2.1.3 Benzene Hydrogenation Selectivity with Platinum Nanocrystals 59 2.2 Motivation for the Present Thesis Research 62 2.3 Experimental Section 64 2.3.1 Chemicals 64 2.3.2 Preparation of Gold Seed Solution and Synthesis of Gold Nanocrystals with 75 nm Cube, Rhombic Dodecahedral and Octahedral Structures 64 2.3.3 Weighing Au NPs 66 2.3.4 Catalysis of 4-Nitroaniline (4-NA) byDifferent Shapes of Au NPs 66 2.3.5 Instrumentation 67 2.4 Results and Discussion 68 2.5 Conclusion 83 2.6 References 84 LIST OF FIGURES CHAPTER 1 Seed-Mediated and Iodide-Assisted Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Rhombic Dodecahedral to Octahedral Structures Figure 1.1 The principal metal nanocrystals that have been prepared into various shapes covering single-crystal, singly twinned, and multiply twinned crystals. 3 Figure 1.2 Once the nuclei have grown past a certain size, they become seeds with a single-crystal, singly twinned, or multiply twinned structure. 4 Figure 1.3 Schematic illustration of the seeding growth method for preparing gold and silver nanorods or nanocubes. 7 Figure 1.4 Electron microscopy images of Ag nanocrystals prepared with PVP as a capping agent, organic solvent and other ions based on the polyol process. 7 Figure 1.5 Polyhedral gold nanocrystals from octahedral evolve to cubic structures with respect to the amount of AgNO3 added in the reaction mixture. 11 Figure 1.6 SEM images of gold nanocrystals with shape evolution from truncated cubic to rhombic dodecahedral structures by increasing the amount of ascorbic acid added. 11 Figure 1.7 SEM images of polyhedral palladium nanocrystal samples synthesized under different conditions. 12 Figure 1.8 HAADF-TEM images and corresponding models of well-defined Pt-Pd core-shell nanocrystals with shape evolution from cubic, cuboctahedral to octahedral structures. 13 Figure 1.9 SEM images of the gold nanocrystals synthesized by progressively increasing the amount of KI added. 25 Figure 1.10 SEM images of individual gold nanocrystals synthesized with the addition of progressively larger volumes of KI resulting in the formation of rhombic dodecahedra, rhomicuboctahedra, edge- and corner-truncated octahedra, edge-truncated octahedra, and octahedra. 26 Figure 1.11 Structural relationships connecting cubic, octahedral, and rhombic dodecahedral nanocrystal shapes. 27 Figure 1.12 XRD patterns of the gold nanocrystals synthesized from rhombic dodecahedra to octahedra. 30 Figure 1.13 TEM images of rhombicuboctahedra viewed in the directions of their {110}, {111}, and {100} faces and the corresponding SAED pattens. 31 Figure 1.14 UV–vis absorption spectra of the gold nanocrystals synthesized with morphologies varying from rhombic dodecahedra to octahedra. 32 Figure 1.15 SEM images of octahedral gold nanocrystals with size variation by increasing the volume of seed solution added to the growth solution. 34 Figure 1.16 SEM images of the self-assembled structures formed by 125 nm octahedral gold nanocrystals. 35 Figure 1.17 SEM images of the self-assembled structures formed by 42 nm octahedral gold nanocrystals. 36 Figure 1.18 UV–vis absorption spectra of octahedral gold nanocrystals with size variation from 42 to 125 nm. 37 Figure 1.19 SEM images of the gold nanocrystals synthesized without the addition of KI in the growth solution. 39 Figure 1.20 SEM images of the gold nanocrystals synthesized by adding 10 □L of 0.01 M KI solution into the growth solution. 40 Figure 1.21 SEM images of the gold nanostructures obtained by adding 30, 50, and 100 □L of 0.01 M KI solution into the growth solution. 40 Figure 1.22 TEM images of the intermediate structures observed by withdrawing a drop of the growth solution at different times during nanocrystal growth. 45 Figure 1.23 High-resolution TEM image of the branched nanostructure shown in Figure 7 collected after 45 s of reaction. 46 CHAPTER 2 Facet-Dependent Catalytic Activity of Gold Nanocrystals toward Nitroaniline Reduction Figure 2.1 Cyclic voltammograms of the three Au–Pd core–shell nanocrystal-modified electrodes for ethanol oxidation. Electroactive surface areas are normalized. 54 Figure 2.2 The forward oxidation current (iF) and reverse oxidation current (iR) value for the three Au–Pd core–shell nanocrystals including concave octahedra, octahedra and THH structures. 54 Figure 2.3 The corresponding UV–vis absorption spectra for the cube, truncated octahedra, octahedra, and extended hexapods for the methyl orange photodecomposition experiments. 57 Figure 2.4 A plot of the extent of photodegradation of methyl orange vs. time for the various Cu2O nanostructures. 58 Figure 2.5 The crystal structure of Cu2O is oriented to show the (100) planes and the (111) planes. A unit cell is drawn in white lines for each crystal orientation. 58 Figure 2.6 SEM images of cubic, rhombic dodecahedral, and octahedral gold nanocrystals. 70 Figure 2.7 The time-resolved UV-vis spectra of the catalytic reaction by using octahedral, cubic, and rhombic dodecahedral gold nanocrystals at temperatures. 71 Figure 2.8 The time-resolved UV-vis spectra of the catalytic reaction by using octahedral, cubic, and rhombic dodecahedral gold nanocrystals at temperatures. 72 Figure 2.9 A plot of absorbance vs. the concentration of 4-nitroaniline (4-NA). 73 Figure 2.10 The successive decrease of catalytic reaction with time by using octahedral, cubic, and rhombic dodecahedral gold nanocrystals at temperatures. 74 Figure 2.11 A plot of logarithmic rate constant vs. reciprocal of temperature at 25 ºC, 32 ºC , 40 ºC and 46 ºC by using octahedral, cubic, and rhombic dodecahedral gold nanocrystals. 79 Figure 2.12 Schematic illustration of the three most important low-index crystal planes of the fcc lattice. 80 Figure 2.13 The most stable structures of 4-nitroaniline on Au(100), Au(110), and Au(111) surfaces. 81 LIST OF TABLES CHAPTER 2 Facet-Dependent Catalytic Activity of Gold Nanocrystals toward Nitroaniline Reduction Table 2.1 Study of the rate constant values, percent yield, and catalytic efficiency with different gold nanoparticles as catalysts. 61 Table 2.2 The bond lengths and BEs for 4-nitroaniline and gold surfaces were calculated at the LC-BP86 functional combined with LANL2DZ basis set for gold atoms and 6-311G(2df) basis set for carbon, hydrogen, nitrogen, and oxygen atoms. 81 Table 2.3 Catalytic efficiency by controlling the available surface areas and number of particles. Finally calculate each rate constant (k) and activation energy (Ea) values with facet-dependent gold nanocrystals as catalysts. 82 LIST OF SCHEMES CHAPTER 1 Seed-Mediated and Iodide-Assisted Synthesis of Gold Nanocrystals with Systematic Shape Evolution from Rhombic Dodecahedral to Octahedral Structures Scheme 1.1. Schematic drawing of the procedure used to make gold nanocrystals with systematic shape evolution from rhombic dodecahedral to octahedral structures. Amounts of reagents used in the preparation of growth solutions are listed. 24 CHAPTER 2 Facet-Dependent Catalytic Activity of Gold Nanocrystals toward Nitroaniline Reduction Scheme 2.1. Proposed reaction mechanism with different shaped gold nanoperticles as catalysts for the reduction of 4-nitroaniline with NaBH4. 61 Scheme 2.2. The procedure for determining sample weight and total particle surface area and the catalytic reaction process. 70

    1.6 References
    [1] M. Mulvihill, A. Tao, K. Benjauthrit, J. Arnold, P. Yang, Angew. Chem. Int. Ed. 2008, 47, 6456 –6460
    [2] Y. Xia, Y. Xiong, B. Lim, S. E. Skrabalak, Angew. Chem. Int. Ed. 2009, 48, 60.
    [3] j. Xu, S. Li, J. Weng, X. Wang, Z. Zhou, K. Yang, M. Liu, X. Chen, Q. Cui, M. Cao, Q. Zhang, Adv. Funct. Mater. 2008, 18, 3780.
    [4] C.-C. Chang, H.-L. Wu, C.-H. Kuo, M. H. Huang, Chem. Mater. 2008, 20, 7570.
    [5] N. R. Jana, L. Gearheart, C. J. Murphy, Chem. Commun. 2001, 617.
    [6] C. J. Murphy, N. R. Jana, Adv. Mater. 2001, 617.
    [7] F. Fiévet, J. P. Lagier, B. Blin, B. Beaudoin, M. Figlarz, Solid State Ionics 1989, 32, 198.
    [8] B. Wiley, Y. Sun, B. Mayers, Y. Xia, Chem. Eur. J. 2005, 11, 454.
    [9] D. Seo, J. C. Park, H. Song. J. Am. Chem. Soc. 2006, 128, 14863.
    [10] D. Seo, J. C. Park, H. Song, J. Am. Chem. Soc. 2006, 128, 14863.
    [11] W. Niu, L. Zhang, G. Xu, ACS Nano 2010, 4, 1987
    [12] S. E. Habas, H. Lee, V. Radmilovic, G. A. Somorjai, P. Yang, Nat. Mater. 2007, 6, 692
    [13] J.-Y. Ho, M. H. Huang, J. Phys. Chem. C 2009, 113, 14159.
    [14] C.-H. Kuo, M. H. Huang, J. Phys. Chem. C 2008, 112, 18355.
    [15] K. M. Bratlie, H. Lee, K. Komvopoulos, P. Yang, G. A. Somorjai, Nano Lett. 2007, 7, 3097.
    [16] C.-H. Kuo, Y.-C. Yang, S. Gwo, M. H. Huang, J. Am. Chem. Soc. 2011, 133, 1052.
    [17] C. G. Read, E. M. P. Steinmiller, K.-S. Choi, J. Am. Chem. Soc. 2009, 131, 12040.
    [18] L.-M. Lyu, W.-C. Wang, M. H. Huang, Chem.-Eur. J. 2010, 16, 14167.
    [19] C.-H. Kuo, M. H. Huang, J. Am. Chem. Soc. 2008, 130, 12815.
    [20] S. E. Habas, H. Lee, V. Radmilovic, G. A. Somojai, P. Yang, Nat. Mater. 2007, 6, 692.
    [21] M. Tsuji, R. Matsuo, P. Jiang, N. Miyamae, D. Ueyama, M. Nishio, S. Hikino, H. Kumagae, K. S. N. Kamarudin, X.-L. Tang, Cryst. Growth Des. 2008, 8, 2528.
    [22] Y. W. Lee, M. Kim, Z. H. Kim, S. W. Han, J. Am. Chem. Soc. 2009, 131, 17036.
    [23] F.-R. Fan, D.-Y. Liu, Y.-F. Wu, S. Duan, Z.-X. Xie, Z.-Y. Jiang, Z.-Q. Tian, J. Am. Chem. Soc. 2008, 130, 6949.
    [24] C.-L. Lu, K. S. Prasad, H.-L. Wu, J.-a. A. Ho, M. H. Huang, M. H. J. Am. Chem. Soc. 2010, 132, 14546.
    [25] C.-H. Kuo, T.-E. Hua, M. H. Huang, J. Am. Chem. Soc. 2009, 131, 17871.
    [26] Z. Quan, J. Fang, Nano Today 2010, 5, 390.
    [27] K. X. Yao, X. M. Yin, T. H. Wang, H. C. Zeng, J. Am. Chem. Soc. 2010, 132, 6131.
    [28] A. Tao, P. Sinsermsuksakul, P. Yang, Angew. Chem. Int. Ed. 2006, 45, 4597.
    [29] T. Mokari, M. Zhang, P. Yang, J. Am. Chem. Soc. 2007, 129, 9864.
    [30] D. Y. Kim, S. H. Im, O. O. Park, Y. T. Lim, CrystEngComm, 2010, 12, 116.
    [31] H.-L. Wu, C.-H. Kuo, M. H. Huang, Langmuir 2010, 26, 12307.
    [32] D. C. Harris, Quantitative Chemical Analysis; W. H. Freeman & Co, New York: 1991; p AP37.
    [33] M. Grzelczak, A. Sánchez-Iglesias, B. Rodríguez-González, R. Alvarez-Puebla, G. Pérez-Juste, L. M. Liz-Marzán, Adv. Funct. Mater. 2008, 18, 3780.
    [34] W.-L. Huang, C.-H. Chen, M. H. Huang, J. Phys. Chem. C 2007, 111, 2533.
    [35] Z. L. Wang, J. Phys. Chem. B 2000, 104, 1153.
    2.6 References
    [1] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 2005, 7, 3297.
    [2] D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, H. Preuss, Theor. Chim. Acta. 1990, 77, 123.
    [3] D. Feller, J. Comput. Chem. 1996, 17, 1571.
    [4] H.-L. Wu, C.-H. Kuo, M. H. Huang, Langmuir 2010, 26, 12307.
    [5] a) D. Seo, J. C. Park, H. Song, J. Am. Chem. Soc. 2006, 128, 14863; b) D. Seo, C. I. Yoo, J. C. Park, S. M. Park, S. Ryu, H. Song, Angew. Chem. 2008, 120, 775; Angew. Chem. Int. Ed. 2008, 47, 763.
    [6] C.-C. Chang, H.-L. Wu, C.-H. Kuo, M. H. Huang, Chem. Mater. 2008, 20, 7570.
    [7] C. Li, K. L. Shuford, Q.-H. Park, W. Cai, Y. Li, E. J. Lee, S. O. Cho, Angew. Chem. 2007, 119, 3328; Angew. Chem. Int. Ed. 2007, 46, 3264.
    [8] G. H. Jeong, M. Kim, Y. W. Lee, W. Choi, W. T. Oh, Q.-H. Park, S. W. Han, J. Am. Chem. Soc. 2009, 131, 1672.
    [9] D. Y. Kim, S. H. Im, O. O. Park, Y. T. Lim, CrystEngComm 2010, 12, 116.
    [10] K. Kwon, K. Y. Lee, Y. W. Lee, M. Kim, J. Heo, S. J. Ahn, S. W. Han, J. Phys. Chem. C 2007, 111, 1161.
    [11] J. Xu, S. Li, J. Weng, X. Wang, Z. Zhou, K. Yang, M. Liu, X. Chen, Q. Cui, M. Cao, Q. Zhang, Adv. Funct. Mater. 2008, 18, 277.
    [12] M. Daniel, D. Astruc, Chem. Rev. 2004, 104, 293.
    [13] S. Bae, S. W. Lee, Y. Takemura, Appl. Phys. Lett. 2006, 89, 252506.
    [14] S. Kundu, H. Liang, Adv. Mater. 2008, 20, 826.
    [15] L. A. Bauer, N. S. Birenbaum, G. J. Mayer, J. Mater. Chem. 2004, 14, 517.
    [16] A. J. Haes, R. P. Van Duyne, J. Am. Chem. Soc. 2002, 124, 10596.
    [17] S. E. Habas, H. Lee, V. Radmilovic, G. A. Somorjai, P. Yang, Nat. Mater. 2007, 6, 692.
    [18] Y. W. Lee, M. Kim, Z. H. Kim, S. W. Han, J. Am. Chem. Soc. 2009, 131, 17036.
    [19] C.-L. Lu, K. S. Prasad, H.-L. Wu, J.-A. A. Ho, M. H. Huang. J. Am. Chem. Soc. 2010, 132, 14546.
    [20] Wang, E. D., Xu, J. B., Zhao, T. S., J. Phys. Chem. C 2010, 114,10489.
    [21] J.-Y. Ho, M. H. Huang, J. Phys. Chem. C 2009, 113, 14159.
    [22] S. Kundu, S. Lau, H. Liang, J. Phys. Chem. C 2009, 113, 5150.
    [23] K. M. Bratlie, L. D. Flores, G. A. Somorjai, J. Phys. Chem. B 2006, 110, 10051.
    [24] K. M. Bratlie, C. J. Kliewer, G. A. Somorjai, J. Phys. Chem. B 2006, 110, 17925.
    [25] G. J. Edens, A. Hamelin, M. J. Weaver, J. Phys. Chem., 1996, 100, 2322.
    [26] S. Kumar, S. Zou, J. Phys. Chem. B, 2005, 109, 15707.
    [27] M. Turner, V. B. Golovko, O. P. H. Vaughan, P. Abdulkin, A. B. Murcia, M. S. Tikhov, B. F. G. Johnson, R. M. Lambert, Nature 2008, 454, 981-983.
    [28] H. Tsunoyama, N. Ichikuni, H. Sakurai, T. Tsukuda, J. Am. Chem. Soc. 2009, 131, 7086.
    [29] S. Kundu, K. Wang, H. Liang, J. Phys. Chem. C 2009, 113, 5157.
    [30] M. Boronat, P. Concepcion, A. Corma, S. Gonzalez, F. Illas, P. Serna, J. Am. Chem. Soc. 2007, 129, 16230.
    [31] K. M. Bratlie, H. Lee, K. Komvopoulos, P. Yang, G. A. Somorjai, Nano Letters 2007, 7, 3097
    [32] S. Praharaj, S. Nath, S. K. Ghosh, S. Kundu, T. Pal, Langmuir 2004, 20, 9889.
    [33] N. Pradhan, A. Pal, T. Pal, Langmuir 2001, 17, 1800.
    [34] A. D. Becke, Phys. Rev. A 1988, 38, 3098.
    [35] J. P. Perdew, Phys. Rev. B 1986, 33, 8822.
    [36] H. Iikura, T. Tsuneda, T. Yanai, K. Hirao, J. Chem. Phys. 2001, 115, 3540.
    [37] P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299.
    [38] S. F. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553.
    [39] Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
    [40] Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Ed. 2009, 48, 60.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE