簡易檢索 / 詳目顯示

研究生: 劉梁明琦
Liu Liang, Ming Chi
論文名稱: Meta‐analysis of gene expression reveals the potential pathways for carcinogenesis in exposure to bisphenol A, and identifies the targets for metastatic stage of colorectal cancer
以巨量基因資料分析雙酚A 對於大腸癌癌化之潛在路徑並探究大腸癌轉移之目標基因
指導教授: 莊淳宇
Chuang, Chun Yu
口試委員: 趙瑞益
Chao, Jui I
廖憶純
Liao, Yi Chun
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 126
中文關鍵詞: 大腸癌雙酚A癌化基因網絡ESRRA輔助化療GRB2
外文關鍵詞: colorectal cancer, bisphenol A, carcinogenesis, gene network, ESRRA, adjuvant chemotherapy, GRB2
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大腸直腸癌(colorectal cancer)發生率在全球排名第四,在台灣位居首位。雙酚A(bisphenol A; BPA)為一內分泌干擾物質,是塑膠容器製程中廣泛使用之塑化劑,人類藉由空氣、飲水和食物等途徑會暴露到BPA。BPA 結構類似雌激素,會與雌激素受體(estrogen receptor; ER)結合,已有研究指出ER 在大腸癌細胞具有抗癌作用,ER 功能失調會導致腫瘤生成,推測BPA 可能干擾ER 作用誘發大腸癌。然而,BPA 暴露可能誘發大腸細胞癌化的分子機制並不清楚,因此本研究利用基因網絡探究BPA 暴露是否影響基因表現而誘發大腸細胞癌化。
    本研究從ArrayExpress 匯集206 個人類細胞暴露BPA 和599 個人類大腸癌組織之微陣列資料,探究BPA 暴露之差異表現基因(differentially expressed genes;DEGs)是否與大腸癌生成和轉移基因有關。微陣列資料以NetworkAnalyst 分析DEGs 並建立模組基因,進一步以Cytoscape 分析各模組基因之基因網絡,整合建構出BPA 暴露誘發大腸細胞癌化之可能基因網絡和路徑。基因網絡結果顯示BPA 暴露可能會影響ESRRA-TP53/MYC-PIK3CA/STAT3-IGF1R 路徑和CTNNB1-MYC/TP53-STAT3/PIK3CA-IGF1R 路徑中之基因表現來誘使大腸癌癌化。本研究亦利用人類大腸直腸腺癌SW480 細胞驗證基因網絡發現,SW480 細胞暴露BPA (10、103 和105 nM)會增加細胞複製及細胞移動和侵襲情形,轉染estrogen-related receptor alpha (ESRRA)基因siRNAs 則會降低細胞移動和侵襲能力。
    此外,根據標靶治療在大腸癌之發展,本研究利用301 個臨床輔助化療藥物
    之治療效果的微陣列資料,探究治療轉移性大腸癌之潛在基因網絡和目標基因,
    建立大腸癌治療之可能基因路徑。結果發現大腸癌化療藥物Bevacizumab、
    Cetuximab 、FOLFIRI 和FOLFOX 均會透過GRB2-CDKN1A-MYC-STAT3/PIK3CA-IGF1R 路徑來治療轉移性大腸癌。SW480細胞轉染GRB2 (growth factor receptor-bound protein 2)基因siRNAs 也會降低細胞移動和侵襲能力。
    本研究藉由基因網絡分析和SW480 細胞驗證發現,BPA 暴露會促使
    ESRRA-TP53/MYC-PIK3CA/STAT3-IGF1R 路徑中上游基因ESRRA 表現,增加
    大腸細胞移動和侵襲之癌化能力。此外,GRB2-CDKN1A-MYC-STAT3/PIK3CA-IGF1R 路徑中上游基因GRB2 表現上升,會降低臨床藥物治療效果,下調GRB2 表現可降低大腸癌細胞轉移能力。因此ESRRA 和GRB2 可做為大腸癌癌化之目標基因。


    The incidence of colorectal cancer (CRC) is rated fourth in the world, and first in Taiwan. Bisphenol A (BPA) is one of endocrine disruptor compounds (EDCs) used as a common plasticizer for manufacturing polycarbonate plastics. Human may expose BPA through air, drinking water and food uptake. BPA is similar in structure to estrogen, and can bind to estrogen receptors (ERs). ERs have been found playing
    anti‐tumorigenic roles in CRC cells that dysregulated ER function would induce development of CRC. It suggested that BPA exposure may affect ER function to lead to tumorigenesis of CRC. However, the effects of BPA exposure on the progression of CRC development is not clearly known. Thus, this study performed a meta‐analysis of gene networks to investigate whether BPA exposure affected gene expression to induce CRC carcinogenesis.
    This study collected the microarray samples of 206 human cells exposure to BPA and 599 human CRC tissues from ArrayExpress to identify the differentially expressed genes (DEGs) for BPA exposure corresponding with CRC progression and metastasis. The module genes of DEGs conducted from NetworkAnalyst were further illustrated by Cytoscape to explore regulatory pathways in the integrated gene network of BPA‐induced CRC carcinogenesis. The results of gene-network analysis showed that BPA exposure could induce CRC carcinogenesis through altered gene expression in ESRRA‐TP53/MYC‐PIK3CA/STAT3‐IGF1R pathway and CTNNB1‐MYC/TP53‐STAT3/PIK3CA‐IGF1R pathway. Furthermore, the result of gene‐network analysis was validated in human colon adenocarcinoma SW480 cells that BPA exposure (10, 103 and 105 nM) promoted cell proliferation, migration and invasion, which can be attenuated by knockdown of upstream gene ESRRA with siESRRA.
    Regarding to the development of targeted therapy in CRC, 301 microarray samples of human CRC tissues relevant to prognosis with adjuvant chemotherapy were used to explore the gene networks and target genes potentially for the therapy of metastatic CRC (mCRC). According to the results of gene‐network analysis, GRB2‐CDKN1A‐MYC‐STAT3/PIK3CA‐IGF1R pathway was the target of adjuvant chemotherapy, Bevacizumab, Cetuximab, FOLFIRI and FOLFOX, for curing mCRC, and the capability of cell migration and invasion in SW480 cells was attenuated after knockdown of upstream gene GRB2 expression with siGRB2.
    The findings of gene‐network analysis and validation in SW480 cells revealed that BPA exposure induced the expression of upstream gene ESRRA in ESRRA‐TP53/MYC‐PIK3CA/STAT3‐IGF1R pathway to trigger cell migration and invasion potentially for CRC carcinogenesis. Overexpressed GRB2 in GRB2‐CDKN1A‐MYC‐STAT3/PIK3CA‐IGF1R pathway reduced adjuvant chemotherapy efficacy, and attenuation of GRB2 suppressed capability of CRC cell metastasis. Therefore, ESRRA and GRB2 could serve as target genes for CRC carcinogenesis.

    摘要 …………………………………………………………………………………………………………………….I Abstract …………………………………………………………………………………………………………………..III Content …………………………………………………………………………………………………………………..VI Chapter 1 Introduction ................................................................................................... 1 Chapter 2 Paper review .................................................................................................. 3 2.1 Epidemiology of colorectal cancer ................................................................... 3 2.2 Classification of colorectal cancer .................................................................... 4 2.3 Molecular pathogenesis in colorectal carcinoma ............................................ 6 2.4 Adjuvant chemotherapy for colorectal cancer ................................................ 7 2.5 Bisphenol A and its distribution ....................................................................... 8 2.6 Toxicity and biological effects of bisphenol A ................................................ 10 2.7 Bisphenol A induces carcinogenesis .............................................................. 13 2.8 siRNA in colorectal cancer .............................................................................. 16 2.9 Gene‐network analysis in colorectal cancer .................................................. 17 2.10 Gene regulation in colorectal cancer ........................................................... 18 Chapter 3 Aim of this study ......................................................................................... 21 Chapter 4 Material and methods ................................................................................. 23 4.1 Collection of microarray dataset .................................................................... 23 4.2 Preprocessing and normalization of microarray datasets ............................. 30 4.3 NetworkAnalyst for differential expression analysis and gene module extraction ....................................................................................................... 30 4.4 Reconstruction of gene network for regulatory pathway identification ....... 32 4.5 Gene ontology analysis .................................................................................. 34 4.6 Cell culture ..................................................................................................... 34 4.7 Cell viability assay .......................................................................................... 35 4.8 Cell migration assay ....................................................................................... 36 4.9 Cell invasion assay .......................................................................................... 36 4.10 Total RNA extraction .................................................................................... 37 4.11 Reverse transcription polymerase chain reaction (PCR) and quantitative real‐time PCR (qPCR) for mRNA determination ............................................. 38 4.12 Transfection of small interfering RNA .......................................................... 40 4.13 Statistical analysis ........................................................................................ 42 Chapter 5 Results ......................................................................................................... 43 5.1 Ontological networks of module genes for BPA exposure, pCRC and mCRC . 44 5.2 Gene regulatory networks of module genes for BPA exposure, pCRC and mCRC .............................................................................................................. 47 5.3 Sub‐networks and potential pathways for BPA exposure, pCRC and mCRC .. 50 5.4 ROC curve analysis of target genes in BPA‐induced carcinogenesis pathways ........................................................................................................................ 53 5.5 GO terms of DEGs for BPA exposure, pCRC and mCRC .................................. 57 5.6 Cytotoxicity of SW480 cells in exposure to BPA ............................................. 62 5.7 Determination of gene expression of target genes for BPA‐induced CRC carcinogenesis ................................................................................................ 63 5.8 Capability of migration and invasion in SW480 cells exposure to BPA .......... 66 5.9 Capability of migration and invasion in SW480 cells exposure to BPA after siESRRA transfection ...................................................................................... 71 5.10 Validation of metastatic pathway of BPA exposure via siESRRA transfection in SW480 cells ................................................................................................ 76 5.11 Ontological networks of module genes for CRC adjuvant chemotherapy ... 79 5.12 Gene regulatory networks of module genes for Bevacizumab, Cetuximab, FOLFIRI and FOLFOX ....................................................................................... 83 5.13 Potential pathway for CRC adjuvant chemotherapy .................................... 87 5.14 ROC curve analysis of target genes in CRC therapeutic pathway ................ 89 5.15 GO terms of DEGs for CRC adjuvant chemotherapy .................................... 91 5.16 Capability of migration and invasion in SW480 cells after siGRB2 transfection .................................................................................................... 97 5.17 Validation of therapeutic pathway of CRC via siGRB2 transfection in SW480 cells .............................................................................................................. 101 Chapter 6 Discussion .................................................................................................. 104 6.1 BPA exposure promoted cell proliferation in SW480 cells ........................... 104 6.2 BPA exposure initiated the potential pathways of CRC carcinogenesis ....... 106 6.3 Overexpressed ESRRA induced metastasis of CRC cells exposure to BPA ... 108 6.4 GRB2 expression affected efficacy of CRC adjuvant chemotherapy ............ 110 Chapter 7 Conclusion ................................................................................................. 113 Chapter 8 References ................................................................................................. 114

    [1] 衛生福利部國民健康署. 衛生福利部國民健康署癌症登記. 2014.
    [2] Liehr JG. Is estradiol a genotoxic mutagenic carcinogen? Endocrine reviews 2000;21:40-54.
    [3] Singh S, Langman MJ. Oestrogen and colonic epithelial cell growth. Gut 1995;37:737-9.
    [4] Mosselman S, Polman J, Dijkema R. ER beta: identification and characterization of a novel human estrogen receptor. FEBS letters 1996;392:49-53.
    [5] Enmark E, Pelto-Huikko M, Grandien K, Lagercrantz S, Lagercrantz J, Fried G, et al. Human estrogen receptor beta-gene structure, chromosomal localization, and expression pattern. The Journal of clinical endocrinology and metabolism 1997;82:4258-65.
    [6] Durando M, Kass L, Piva J, Sonnenschein C, Soto AM, Luque EH, et al. Prenatal bisphenol A exposure induces preneoplastic lesions in the mammary gland in Wistar rats. Environmental health perspectives 2007;115:80-6.
    [7] Jenkins S, Raghuraman N, Eltoum I, Carpenter M, Russo J, Lamartiniere CA. Oral exposure to bisphenol a increases dimethylbenzanthracene-induced mammary cancer in rats. Environmental health perspectives 2009;117:910-5.
    [8] Fenton SE, Birnbaum LS. Timing of Environmental Exposures as a Critical Element in Breast Cancer Risk. The Journal of clinical endocrinology and metabolism 2015;100:3245-50.
    [9] Braniste V, Jouault A, Gaultier E, Polizzi A, Buisson-Brenac C, Leveque M, et al. Impact of oral bisphenol A at reference doses on intestinal barrier function and sex differences after perinatal exposure in rats. Proceedings of the National Academy of Sciences of the United States of America 2010;107:448-53.
    [10] Chen ZJ, Yang XL, Liu H, Wei W, Zhang KS, Huang HB, et al. Bisphenol A modulates colorectal cancer protein profile and promotes the metastasis via induction of epithelial to mesenchymal transitions. Archives of toxicology 2015;89:1371-81.
    [11] Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA: a cancer journal for clinicians 2013;63:11-30.
    [12] Brenner H, Kloor M, Pox CP. Colorectal cancer. Lancet 2014;383:1490-502.
    [13] Boyle P, Langman JS. ABC of colorectal cancer: Epidemiology. BMJ (Clinical research ed) 2000;321:805-8.
    [14] Guo P, Huang ZL, Yu P, Li K. Trends in cancer mortality in China: an update. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO 2012;23:2755-62.
    [15] 衛生福利部統計處. 衛生福利部統計處死因統計. 2014.
    [16] Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International journal of cancer Journal international du cancer 2015;136:E359-86.
    [17] Taylor DP, Burt RW, Williams MS, Haug PJ, Cannon-Albright LA. Population-based family history-specific risks for colorectal cancer: a constellation approach. Gastroenterology 2010;138:877-85.
    [18] Jess T, Rungoe C, Peyrin-Biroulet L. Risk of colorectal cancer in patients with ulcerative colitis: a meta-analysis of population-based cohort studies. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association 2012;10:639-45.
    [19] Liang PS, Chen TY, Giovannucci E. Cigarette smoking and colorectal cancer incidence and mortality: systematic review and meta-analysis. International journal of cancer Journal international du cancer 2009;124:2406-15.
    [20] Fedirko V, Tramacere I, Bagnardi V, Rota M, Scotti L, Islami F, et al. Alcohol drinking and colorectal cancer risk: an overall and dose-response meta-analysis of published studies. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO 2011;22:1958-72.
    [21] Chan DS, Lau R, Aune D, Vieira R, Greenwood DC, Kampman E, et al. Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PloS one 2011;6:e20456.
    [22] Ma Y, Yang Y, Wang F, Zhang P, Shi C, Zou Y, et al. Obesity and risk of colorectal cancer: a systematic review of prospective studies. PloS one 2013;8:e53916.
    [23] Jiang Y, Ben Q, Shen H, Lu W, Zhang Y, Zhu J. Diabetes mellitus and incidence and mortality of colorectal cancer: a systematic review and meta-analysis of cohort studies. European journal of epidemiology 2011;26:863-76.
    [24] O'Connell JB, Maggard MA, Ko CY. Colon cancer survival rates with the new American Joint Committee on Cancer sixth edition staging. Journal of the National Cancer Institute 2004;96:1420-5.
    [25] Setaffy L, Langner C. Microsatellite instability in colorectal cancer: clinicopathological significance. Polish journal of pathology : official journal of the Polish Society of Pathologists 2015;66:203-18.
    [26] Ilyas M, Straub J, Tomlinson IP, Bodmer WF. Genetic pathways in colorectal and other cancers. European journal of cancer (Oxford, England : 1990) 1999;35:1986-2002.
    [27] Noffsinger AE. Serrated polyps and colorectal cancer: new pathway to malignancy. Annual review of pathology 2009;4:343-64.
    [28] Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, et al. Genetic alterations during colorectal-tumor development. The New England journal of medicine 1988;319:525-32.
    [29] Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology 2010;138:2059-72.
    [30] Sinicrope FA, Sargent DJ. Molecular pathways: microsatellite instability in colorectal cancer: prognostic, predictive, and therapeutic implications. Clinical cancer research : an official journal of the American Association for Cancer Research 2012;18:1506-12.
    [31] Jass JR. Colorectal cancer: a multipathway disease. Critical reviews in oncogenesis 2006;12:273-87.
    [32] Wu C, Bekaii-Saab T. CpG Island Methylation, Microsatellite Instability, and BRAF Mutations and Their Clinical Application in the Treatment of Colon Cancer. Chemotherapy research and practice 2012;2012:359041.
    [33] Scheithauer W, Rosen H, Kornek GV, Sebesta C, Depisch D. Randomised comparison of combination chemotherapy plus supportive care with supportive care alone in patients with metastatic colorectal cancer. BMJ (Clinical research ed) 1993;306:752-5.
    [34] Lucas AS, O'Neil BH, Goldberg RM. A decade of advances in cytotoxic chemotherapy for metastatic colorectal cancer. Clinical colorectal cancer 2011;10:238-44.
    [35] Modulation of fluorouracil by leucovorin in patients with advanced colorectal cancer: evidence in terms of response rate. Advanced Colorectal Cancer Meta-Analysis Project. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 1992;10:896-903.
    [36] de Gramont A, Figer A, Seymour M, Homerin M, Hmissi A, Cassidy J, et al. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2000;18:2938-47.
    [37] Douillard JY, Cunningham D, Roth AD, Navarro M, James RD, Karasek P, et al. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal cancer: a multicentre randomised trial. Lancet 2000;355:1041-7.
    [38] Saltz LB, Cox JV, Blanke C, Rosen LS, Fehrenbacher L, Moore MJ, et al. Irinotecan plus fluorouracil and leucovorin for metastatic colorectal cancer. Irinotecan Study Group. The New England journal of medicine 2000;343:905-14.
    [39] Fuchs CS, Marshall J, Mitchell E, Wierzbicki R, Ganju V, Jeffery M, et al. Randomized, controlled trial of irinotecan plus infusional, bolus, or oral fluoropyrimidines in first-line treatment of metastatic colorectal cancer: results from the BICC-C Study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 2007;25:4779-86.
    [40] Benson AB, 3rd, Bekaii-Saab T, Chan E, Chen YJ, Choti MA, Cooper HS, et al. Metastatic colon cancer, version 3.2013: featured updates to the NCCN Guidelines. Journal of the National Comprehensive Cancer Network : JNCCN 2013;11:141-52; quiz 52.
    [41] Avissar-Whiting M, Veiga KR, Uhl KM, Maccani MA, Gagne LA, Moen EL, et al. Bisphenol A exposure leads to specific microRNA alterations in placental cells. Reproductive toxicology (Elmsford, NY) 2010;29:401-6.
    [42] Agency USEP. Bisphenol A alternatives in thermal paper. Final Report. 2014.
    [43] Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJ, Schoenfelder G. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Ciencia & saude coletiva 2012;17:407-34.
    [44] Bhan A, Hussain I, Ansari KI, Bobzean SA, Perrotti LI, Mandal SS. Bisphenol-A and diethylstilbestrol exposure induces the expression of breast cancer associated long noncoding RNA HOTAIR in vitro and in vivo. The Journal of steroid biochemistry and molecular biology 2014;141:160-70.
    [45] Dodson RE, Nishioka M, Standley LJ, Perovich LJ, Brody JG, Rudel RA. Endocrine disruptors and asthma-associated chemicals in consumer products. Environmental health perspectives 2012;120:935-43.
    [46] Goodson A, Robin H, Summerfield W, Cooper I. Migration of bisphenol A from can coatings--effects of damage, storage conditions and heating. Food additives and contaminants 2004;21:1015-26.
    [47] Calafat AM, Weuve J, Ye X, Jia LT, Hu H, Ringer S, et al. Exposure to bisphenol A and other phenols in neonatal intensive care unit premature infants. Environmental health perspectives 2009;117:639-44.
    [48] Braun JM, Kalkbrenner AE, Calafat AM, Bernert JT, Ye X, Silva MJ, et al. Variability and predictors of urinary bisphenol A concentrations during pregnancy. Environmental health perspectives 2011;119:131-7.
    [49] Van Landuyt KL, Nawrot T, Geebelen B, De Munck J, Snauwaert J, Yoshihara K, et al. How much do resin-based dental materials release? A meta-analytical approach. Dental materials : official publication of the Academy of Dental Materials 2011;27:723-47.
    [50] Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL. Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environmental health perspectives 2008;116:39-44.
    [51] Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV. Human exposure to bisphenol A (BPA). Reproductive toxicology (Elmsford, NY) 2007;24:139-77.
    [52] Kuroda N, Kinoshita Y, Sun Y, Wada M, Kishikawa N, Nakashima K, et al. Measurement of bisphenol A levels in human blood serum and ascitic fluid by HPLC using a fluorescent labeling reagent. Journal of pharmaceutical and biomedical analysis 2003;30:1743-9.
    [53] Edginton AN, Ritter L. Predicting plasma concentrations of bisphenol A in children younger than 2 years of age after typical feeding schedules, using a physiologically based toxicokinetic model. Environmental health perspectives 2009;117:645-52.
    [54] Nepomnaschy PA, Baird DD, Weinberg CR, Hoppin JA, Longnecker MP, Wilcox AJ. Within-person variability in urinary bisphenol A concentrations: measurements from specimens after long-term frozen storage. Environmental research 2009;109:734-7.
    [55] Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Ekong J, Needham LL. Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environmental health perspectives 2005;113:391-5.
    [56] Schonfelder G, Wittfoht W, Hopp H, Talsness CE, Paul M, Chahoud I. Parent bisphenol A accumulation in the human maternal-fetal-placental unit. Environmental health perspectives 2002;110:A703-7.
    [57] Corrales J, Kristofco LA, Steele WB, Yates BS, Breed CS, Williams ES, et al. Global Assessment of Bisphenol A in the Environment: Review and Analysis of Its Occurrence and Bioaccumulation. Dose-response : a publication of International Hormesis Society 2015;13:1559325815598308.
    [58] Shelby MD. NTP-CERHR monograph on the potential human reproductive and developmental effects of bisphenol A. Ntp cerhr mon 2008:v, vii-ix, 1-64 passim.
    [59] Williams SA, Jasarevic E, Vandas GM, Warzak DA, Geary DC, Ellersieck MR, et al. Effects of developmental bisphenol A exposure on reproductive-related behaviors in California mice (Peromyscus californicus): a monogamous animal model. PloS one 2013;8:e55698.
    [60] MacLusky NJ, Hajszan T, Leranth C. The environmental estrogen bisphenol a inhibits estradiol-induced hippocampal synaptogenesis. Environmental health perspectives 2005;113:675-9.
    [61] Mielke H, Gundert-Remy U. Bisphenol A levels in blood depend on age and exposure. Toxicology letters 2009;190:32-40.
    [62] Ginsberg G, Rice DC. Does rapid metabolism ensure negligible risk from bisphenol A? Environmental health perspectives 2009;117:1639-43.
    [63] Nagel SC, vom Saal FS, Thayer KA, Dhar MG, Boechler M, Welshons WV. Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol. Environmental health perspectives 1997;105:70-6.
    [64] Oppeneer SJ, Robien K. Bisphenol A exposure and associations with obesity among adults: a critical review. Public health nutrition 2015;18:1847-63.
    [65] Melzer D, Rice NE, Lewis C, Henley WE, Galloway TS. Association of urinary bisphenol a concentration with heart disease: evidence from NHANES 2003/06. PloS one 2010;5:e8673.
    [66] Lang IA, Galloway TS, Scarlett A, Henley WE, Depledge M, Wallace RB, et al. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. Jama 2008;300:1303-10.
    [67] Hong YC, Park EY, Park MS, Ko JA, Oh SY, Kim H, et al. Community level exposure to chemicals and oxidative stress in adult population. Toxicology letters 2009;184:139-44.
    [68] Yang YJ, Hong YC, Oh SY, Park MS, Kim H, Leem JH, et al. Bisphenol A exposure is associated with oxidative stress and inflammation in postmenopausal women. Environmental research 2009;109:797-801.
    [69] Tarapore P, Ying J, Ouyang B, Burke B, Bracken B, Ho SM. Exposure to bisphenol A correlates with early-onset prostate cancer and promotes centrosome amplification and anchorage-independent growth in vitro. PloS one 2014;9:e90332.
    [70] Yang M, Ryu JH, Jeon R, Kang D, Yoo KY. Effects of bisphenol A on breast cancer and its risk factors. Archives of toxicology 2009;83:281-5.
    [71] Yang CW, Chou WC, Chen KH, Cheng AL, Mao IF, Chao HR, et al. Visualized gene network reveals the novel target transcripts Sox2 and Pax6 of neuronal development in trans-placental exposure to bisphenol A. PloS one 2014;9:e100576.
    [72] Yin R, Gu L, Li M, Jiang C, Cao T, Zhang X. Gene expression profiling analysis of bisphenol A-induced perturbation in biological processes in ER-negative HEK293 cells. PloS one 2014;9:e98635.
    [73] Tabuchi Y, Takasaki I, Kondo T. Identification of genetic networks involved in the cell injury accompanying endoplasmic reticulum stress induced by bisphenol A in testicular Sertoli cells. Biochemical and biophysical research communications 2006;345:1044-50.
    [74] Cogliano VJ, Baan R, Straif K, Grosse Y, Lauby-Secretan B, El Ghissassi F, et al. Preventable exposures associated with human cancers. Journal of the National Cancer Institute 2011;103:1827-39.
    [75] Soto AM, Brisken C, Schaeberle C, Sonnenschein C. Does cancer start in the womb? altered mammary gland development and predisposition to breast cancer due to in utero exposure to endocrine disruptors. Journal of mammary gland biology and neoplasia 2013;18:199-208.
    [76] Johnson GE, Parry EM. Mechanistic investigations of low dose exposures to the genotoxic compounds bisphenol-A and rotenone. Mutation research 2008;651:56-63.
    [77] Takahashi S, Chi XJ, Yamaguchi Y, Suzuki H, Sugaya S, Kita K, et al. Mutagenicity of bisphenol A and its suppression by interferon-alpha in human RSa cells. Mutation research 2001;490:199-207.
    [78] Fernandez SV, Huang Y, Snider KE, Zhou Y, Pogash TJ, Russo J. Expression and DNA methylation changes in human breast epithelial cells after bisphenol A exposure. International journal of oncology 2012;41:369-77.
    [79] George O, Bryant BK, Chinnasamy R, Corona C, Arterburn JB, Shuster CB. Bisphenol A directly targets tubulin to disrupt spindle organization in embryonic and somatic cells. ACS chemical biology 2008;3:167-79.
    [80] Prins GS, Ye SH, Birch L, Ho SM, Kannan K. Serum bisphenol A pharmacokinetics and prostate neoplastic responses following oral and subcutaneous exposures in neonatal Sprague-Dawley rats. Reproductive toxicology (Elmsford, NY) 2011;31:1-9.
    [81] Prins GS, Hu WY, Shi GB, Hu DP, Majumdar S, Li G, et al. Bisphenol A promotes human prostate stem-progenitor cell self-renewal and increases in vivo carcinogenesis in human prostate epithelium. Endocrinology 2014;155:805-17.
    [82] Weinhouse C, Anderson OS, Bergin IL, Vandenbergh DJ, Gyekis JP, Dingman MA, et al. Dose-dependent incidence of hepatic tumors in adult mice following perinatal exposure to bisphenol A. Environmental health perspectives 2014;122:485-91.
    [83] Moral R, Wang R, Russo IH, Lamartiniere CA, Pereira J, Russo J. Effect of prenatal exposure to the endocrine disruptor bisphenol A on mammary gland morphology and gene expression signature. The Journal of endocrinology 2008;196:101-12.
    [84] Acevedo N, Davis B, Schaeberle CM, Sonnenschein C, Soto AM. Perinatally administered bisphenol a as a potential mammary gland carcinogen in rats. Environmental health perspectives 2013;121:1040-6.
    [85] Thomas DB. Do hormones cause breast cancer? Cancer 1984;53:595-604.
    [86] Giguere V. Transcriptional control of energy homeostasis by the estrogen-related receptors. Endocrine reviews 2008;29:677-96.
    [87] Cai Q, Lin T, Kamarajugadda S, Lu J. Regulation of glycolysis and the Warburg effect by estrogen-related receptors. Oncogene 2013;32:2079-86.
    [88] Cavallini A, Notarnicola M, Giannini R, Montemurro S, Lorusso D, Visconti A, et al. Oestrogen receptor-related receptor alpha (ERRalpha) and oestrogen receptors (ERalpha and ERbeta) exhibit different gene expression in human colorectal tumour progression. European journal of cancer (Oxford, England : 1990) 2005;41:1487-94.
    [89] Suzuki T, Miki Y, Moriya T, Shimada N, Ishida T, Hirakawa H, et al. Estrogen-related receptor alpha in human breast carcinoma as a potent prognostic factor. Cancer research 2004;64:4670-6.
    [90] Cheung CP, Yu S, Wong KB, Chan LW, Lai FM, Wang X, et al. Expression and functional study of estrogen receptor-related receptors in human prostatic cells and tissues. The Journal of clinical endocrinology and metabolism 2005;90:1830-44.
    [91] Gao M, Sun P, Wang J, Zhao D, Wei L. Expression of estrogen receptor-related receptor isoforms and clinical significance in endometrial adenocarcinoma. International journal of gynecological cancer : official journal of the International Gynecological Cancer Society 2006;16:827-33.
    [92] Sun P, Sehouli J, Denkert C, Mustea A, Konsgen D, Koch I, et al. Expression of estrogen receptor-related receptors, a subfamily of orphan nuclear receptors, as new tumor biomarkers in ovarian cancer cells. Journal of molecular medicine (Berlin, Germany) 2005;83:457-67.
    [93] Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001;411:494-8.
    [94] Jinek M, Doudna JA. A three-dimensional view of the molecular machinery of RNA interference. Nature 2009;457:405-12.
    [95] Hannon GJ, Rossi JJ. Unlocking the potential of the human genome with RNA interference. Nature 2004;431:371-8.
    [96] Seyhan AA. RNAi: a potential new class of therapeutic for human genetic disease. Human genetics 2011;130:583-605.
    [97] Heidel JD, Hu S, Liu XF, Triche TJ, Davis ME. Lack of interferon response in animals to naked siRNAs. Nature biotechnology 2004;22:1579-82.
    [98] Pai SI, Lin YY, Macaes B, Meneshian A, Hung CF, Wu TC. Prospects of RNA interference therapy for cancer. Gene therapy 2006;13:464-77.
    [99] Rao DD, Wang Z, Senzer N, Nemunaitis J. RNA interference and personalized cancer therapy. Discovery medicine 2013;15:101-10.
    [100] Tai J, Wang G, Liu T, Wang L, Lin C, Li F. Effects of siRNA targeting c-Myc and VEGF on human colorectal cancer Volo cells. Journal of biochemical and molecular toxicology 2012;26:499-505.
    [101] Wiktorska M, Sacewicz-Hofman I, Stasikowska-Kanicka O, Danilewicz M, Niewiarowska J. Distinct inhibitory efficiency of siRNAs and DNAzymes to beta1 integrin subunit in blocking tumor growth. Acta biochimica Polonica 2013;60:77-82.
    [102] Zhang G, He P, Tan H, Budhu A, Gaedcke J, Ghadimi BM, et al. Integration of metabolomics and transcriptomics revealed a fatty acid network exerting growth inhibitory effects in human pancreatic cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 2013;19:4983-93.
    [103] Gieger C, Geistlinger L, Altmaier E, Hrabe de Angelis M, Kronenberg F, Meitinger T, et al. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum. PLoS genetics 2008;4:e1000282.
    [104] Tseng A, Yang CH, Chen CH, Chen CH, Hsu SL, Lee MH, et al. An in vivo molecular response analysis of colorectal cancer treated with Astragalus membranaceus extract. Oncology reports 2016;35:659-68.
    [105] An N, Yang X, Cheng S, Wang G, Zhang K. Developmental genes significantly afflicted by aberrant promoter methylation and somatic mutation predict overall survival of late-stage colorectal cancer. Scientific reports 2015;5:18616.
    [106] Yin Y, Song M, Gu B, Qi X, Hu Y, Feng Y, et al. Systematic analysis of key miRNAs and related signaling pathways in colorectal tumorigenesis. Gene 2016;578:177-84.
    [107] Jansson MD, Lund AH. MicroRNA and cancer. Molecular oncology 2012;6:590-610.
    [108] Sun JY, Huang Y, Li JP, Zhang X, Wang L, Meng YL, et al. MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting beta-catenin. Biochemical and biophysical research communications 2012;420:787-92.
    [109] Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S, et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proceedings of the National Academy of Sciences of the United States of America 2009;106:3207-12.
    [110] Zhang J, Lu Y, Yue X, Li H, Luo X, Wang Y, et al. MiR-124 suppresses growth of human colorectal cancer by inhibiting STAT3. PloS one 2013;8:e70300.
    [111] Guo ST, Jiang CC, Wang GP, Li YP, Wang CY, Guo XY, et al. MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressive role in human colorectal cancer. Oncogene 2013;32:1910-20.
    [112] Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, et al. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008;27:2128-36.
    [113] Ideker T, Ozier O, Schwikowski B, Siegel AF. Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics (Oxford, England) 2002;18 Suppl 1:S233-40.
    [114] Beisser D, Klau GW, Dandekar T, Muller T, Dittrich MT. BioNet: an R-Package for the functional analysis of biological networks. Bioinformatics (Oxford, England) 2010;26:1129-30.
    [115] Auld KL, Berasi SP, Liu Y, Cain M, Zhang Y, Huard C, et al. Estrogen-related receptor alpha regulates osteoblast differentiation via Wnt/beta-catenin signaling. Journal of molecular endocrinology 2012;48:177-91.
    [116] Dwyer MA, Joseph JD, Wade HE, Eaton ML, Kunder RS, Kazmin D, et al. WNT11 expression is induced by estrogen-related receptor alpha and beta-catenin and acts in an autocrine manner to increase cancer cell migration. Cancer research 2010;70:9298-308.
    [117] Rosenzweig SA, Atreya HS. Defining the pathway to insulin-like growth factor system targeting in cancer. Biochemical pharmacology 2010;80:1115-24.
    [118] Ge LC, Chen ZJ, Liu HY, Zhang KS, Liu H, Huang HB, et al. Involvement of activating ERK1/2 through G protein coupled receptor 30 and estrogen receptor alpha/beta in low doses of bisphenol A promoting growth of Sertoli TM4 cells. Toxicology letters 2014;226:81-9.
    [119] Tang Q, Zou Z, Zou C, Zhang Q, Huang R, Guan X, et al. MicroRNA-93 suppress colorectal cancer development via Wnt/beta-catenin pathway downregulating. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2015;36:1701-10.
    [120] Tan Z, Zheng H, Liu X, Zhang W, Zhu J, Wu G, et al. MicroRNA-1229 overexpression promotes cell proliferation and tumorigenicity and activates Wnt/beta-catenin signaling in breast cancer. Oncotarget 2016.
    [121] Scholer-Dahirel A, Schlabach MR, Loo A, Bagdasarian L, Meyer R, Guo R, et al. Maintenance of adenomatous polyposis coli (APC)-mutant colorectal cancer is dependent on Wnt/beta-catenin signaling. Proceedings of the National Academy of Sciences of the United States of America 2011;108:17135-40.
    [122] Huang JW, Guan BZ, Yin LH, Liu FN, Hu B, Zheng QY, et al. Effects of estrogen-related receptor alpha (ERRalpha) on proliferation and metastasis of human lung cancer A549 cells. Journal of Huazhong University of Science and Technology Medical sciences = Hua zhong ke ji da xue xue bao Yi xue Ying De wen ban = Huazhong keji daxue xuebao Yixue Yingdewen ban 2014;34:875-81.
    [123] Bernatchez G, Giroux V, Lassalle T, Carpentier AC, Rivard N, Carrier JC. ERRalpha metabolic nuclear receptor controls growth of colon cancer cells. Carcinogenesis 2013;34:2253-61.
    [124] Drosten M, Sum EY, Lechuga CG, Simon-Carrasco L, Jacob HK, Garcia-Medina R, et al. Loss of p53 induces cell proliferation via Ras-independent activation of the Raf/Mek/Erk signaling pathway. Proceedings of the National Academy of Sciences of the United States of America 2014;111:15155-60.
    [125] Peng X, Yang L, Chang H, Dai G, Wang F, Duan X, et al. Wnt/beta-catenin signaling regulates the proliferation and differentiation of mesenchymal progenitor cells through the p53 pathway. PloS one 2014;9:e97283.
    [126] Yan W, Liu G, Scoumanne A, Chen X. Suppression of inhibitor of differentiation 2, a target of mutant p53, is required for gain-of-function mutations. Cancer research 2008;68:6789-96.
    [127] Scian MJ, Stagliano KE, Anderson MA, Hassan S, Bowman M, Miles MF, et al. Tumor-derived p53 mutants induce NF-kappaB2 gene expression. Molecular and cellular biology 2005;25:10097-110.
    [128] Di Agostino S, Strano S, Emiliozzi V, Zerbini V, Mottolese M, Sacchi A, et al. Gain of function of mutant p53: the mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer cell 2006;10:191-202.
    [129] Yin YW, Jin HJ, Zhao W, Gao B, Fang J, Wei J, et al. The Histone Acetyltransferase GCN5 Expression Is Elevated and Regulated by c-Myc and E2F1 Transcription Factors in Human Colon Cancer. Gene expression 2015;16:187-96.
    [130] Dang CV. MYC on the path to cancer. Cell 2012;149:22-35.
    [131] Togel L, Nightingale R, Chueh AC, Jayachandran A, Tran H, Phesse T, et al. Dual Targeting of Bromodomain and Extraterminal Domain Proteins, and WNT or MAPK Signaling, Inhibits c-MYC Expression and Proliferation of Colorectal Cancer Cells. Molecular cancer therapeutics 2016;15:1217-26.
    [132] Zhang XL, Wang HS, Liu N, Ge LC. Bisphenol A stimulates the epithelial mesenchymal transition of estrogen negative breast cancer cells via FOXA1 signals. Archives of biochemistry and biophysics 2015;585:10-6.
    [133] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144:646-74.
    [134] Kudo-Saito C, Shirako H, Takeuchi T, Kawakami Y. Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer cell 2009;15:195-206.
    [135] Bak Y, Kwon T, Bak IS, Hong J, Yu DY, Yoon DY. IL-32theta inhibits stemness and epithelial-mesenchymal transition of cancer stem cells via the STAT3 pathway in colon cancer. Oncotarget 2016.
    [136] Bonelli MA, Cavazzoni A, Saccani F, Alfieri RR, Quaini F, La Monica S, et al. Inhibition of PI3K Pathway Reduces Invasiveness and Epithelial-to-Mesenchymal Transition in Squamous Lung Cancer Cell Lines Harboring PIK3CA Gene Alterations. Molecular cancer therapeutics 2015;14:1916-27.
    [137] Morgillo F, Woo JK, Kim ES, Hong WK, Lee HY. Heterodimerization of insulin-like growth factor receptor/epidermal growth factor receptor and induction of survivin expression counteract the antitumor action of erlotinib. Cancer research 2006;66:10100-11.
    [138] Irie HY, Pearline RV, Grueneberg D, Hsia M, Ravichandran P, Kothari N, et al. Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial-mesenchymal transition. The Journal of cell biology 2005;171:1023-34.
    [139] Graham TR, Zhau HE, Odero-Marah VA, Osunkoya AO, Kimbro KS, Tighiouart M, et al. Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer research 2008;68:2479-88.
    [140] Giguere V, Yang N, Segui P, Evans RM. Identification of a new class of steroid hormone receptors. Nature 1988;331:91-4.
    [141] Sailland J, Tribollet V, Forcet C, Billon C, Barenton B, Carnesecchi J, et al. Estrogen-related receptor alpha decreases RHOA stability to induce orientated cell migration. Proceedings of the National Academy of Sciences of the United States of America 2014;111:15108-13.
    [142] Bardet PL, Horard B, Laudet V, Vanacker JM. The ERRalpha orphan nuclear receptor controls morphogenetic movements during zebrafish gastrulation. Developmental biology 2005;281:102-11.
    [143] Chang CY, Kazmin D, Jasper JS, Kunder R, Zuercher WJ, McDonnell DP. The metabolic regulator ERRalpha, a downstream target of HER2/IGF-1R, as a therapeutic target in breast cancer. Cancer cell 2011;20:500-10.
    [144] Ariazi EA, Jordan VC. Estrogen-related receptors as emerging targets in cancer and metabolic disorders. Current topics in medicinal chemistry 2006;6:203-15.
    [145] Lam SS, Mak AS, Yam JW, Cheung AN, Ngan HY, Wong AS. Targeting estrogen-related receptor alpha inhibits epithelial-to-mesenchymal transition and stem cell properties of ovarian cancer cells. Molecular therapy : the journal of the American Society of Gene Therapy 2014;22:743-51.
    [146] Rozakis-Adcock M, Fernley R, Wade J, Pawson T, Bowtell D. The SH2 and SH3 domains of mammalian Grb2 couple the EGF receptor to the Ras activator mSos1. Nature 1993;363:83-5.
    [147] Choudhary KS, Rohatgi N, Halldorsson S, Briem E, Gudjonsson T, Gudmundsson S, et al. EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT. PLoS computational biology 2016;12:e1004924.
    [148] Dharmawardana PG, Peruzzi B, Giubellino A, Burke TR, Jr., Bottaro DP. Molecular targeting of growth factor receptor-bound 2 (Grb2) as an anti-cancer strategy. Anti-cancer drugs 2006;17:13-20.
    [149] Zhang JS, Koenig A, Young C, Billadeau DD. GRB2 couples RhoU to epidermal growth factor receptor signaling and cell migration. Molecular biology of the cell 2011;22:2119-30.
    [150] Yu GZ, Chen Y, Long YQ, Dong D, Mu XL, Wang JJ. New insight into the key proteins and pathways involved in the metastasis of colorectal carcinoma. Oncology reports 2008;19:1191-204.
    [151] Saucier C, Papavasiliou V, Palazzo A, Naujokas MA, Kremer R, Park M. Use of signal specific receptor tyrosine kinase oncoproteins reveals that pathways downstream from Grb2 or Shc are sufficient for cell transformation and metastasis. Oncogene 2002;21:1800-11.
    [152] Zhao G, Wojciechowski MC, Jee S, Boros J, McAvoy JW, Lovicu FJ. Negative regulation of TGFbeta-induced lens epithelial to mesenchymal transition (EMT) by RTK antagonists. Experimental eye research 2015;132:9-16.
    [153] Aneja R, Ghaleb AM, Zhou J, Yang VW, Joshi HC. p53 and p21 determine the sensitivity of noscapine-induced apoptosis in colon cancer cells. Cancer research 2007;67:3862-70.
    [154] Zhang Y, Geng L, Talmon G, Wang J. MicroRNA-520g confers drug resistance by regulating p21 expression in colorectal cancer. The Journal of biological chemistry 2015;290:6215-25.
    [155] Kang KH, Kim WH, Choi KH. p21 promotes ceramide-induced apoptosis and antagonizes the antideath effect of Bcl-2 in human hepatocarcinoma cells. Experimental cell research 1999;253:403-12.
    [156] Liu ZM, Huang HS. As2O3-induced c-Src/EGFR/ERK signaling is via Sp1 binding sites to stimulate p21WAF1/CIP1 expression in human epidermoid carcinoma A431 cells. Cellular signalling 2006;18:244-55.
    [157] Mukherjee S, Conrad SE. c-Myc suppresses p21WAF1/CIP1 expression during estrogen signaling and antiestrogen resistance in human breast cancer cells. The Journal of biological chemistry 2005;280:17617-25.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE