簡易檢索 / 詳目顯示

研究生: 葉仁超
Ren-Chao Yeh
論文名稱: 運動影片中的音訊事件偵測
Audio Event Detection for Sports Videos
指導教授: 張智星
Jyh-Shing Roger Jang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 42
中文關鍵詞: 聲音事件足球網球
外文關鍵詞: Audio events, Soccer, Tennis
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於現在人們的生活非常忙碌,如果要花時間看完一個完整的電視節目(新聞、運動比賽、討論性節目)幾乎是難上加難,所以為了不讓時間浪費在一些無謂的鏡頭或是不感興趣的片斷,例如:暫停、廣告、中場休息 ... 等等。發展一套系統能夠自動辨識出觀眾想看的片斷,變成了一個很重要的研究議題,如何有效的解決這類的問題,也已經引起很多人的關注。
    本論文利用HMM的特性來辨識運動影片中的聲音事件,利用:MFCC、頻譜中心(Spectrum Centroid )、頻譜離散度(Spectrum Spread)和頻譜滑動(Spectral Rolloff),作為描述聲音事件的特徵參數。
    在實驗部分我們設計了兩大類的方法:
    1. 取得最適合每個事件(Event)的狀態數(State)。
    2. 選出最合適的特徵描述所有的聲音事件。
    最後我們會比較調整前後辨識率進步的程度,證明我們的方法可以套用在其他的運動比賽中。


    Now, It is difficult to watch a complete TV program for people. So, how to extract the most important or interesting fragments become a popular topic for researchers.
    In this paper, we used the characteristic of HMM to detect the audio events for the sports videos. We also used MFCC, Spectrum Centroid, Spectrum , Spectral Rolloff Spread to regard as the features of the audio events.
    We designed two methods in the experiment:
    1. We try to find the best number of states for describing the audio events.
    2. We try to find the best rang of Triangular band pass filters for each audio event.
    Finally, we compared the results for proving our method can be used in other sports videos.

    1. 序論 1.1. 簡介 1.2. 相關研究 1.2.1. 利用關鍵字找出關鍵的事件 1.2.2. 著重於聲音訊號的篩選 1.2.3. 資料採礦(DATA MINING) 1.3. 論文的方法簡介 1.4. 章節概要 2. 特徵擷取 預強調(PRE-EMPHASIS) 音框化(FRAME BLOCKING) 漢明窗(HAMMING WINDOW) 快速傅利葉轉換(FAST FOURIER TRANSFORM, OR FFT) 三角帶通濾波器(TRIANGULAR BAND PASS FILTERS) 離散餘弦轉換(DISCRETE COSINE TRANSFORM, OR DCT) 對數能量(LOG ENERGY) 差量倒頻譜參數(DELTA CEPSTRUM) 3. 連續性隱藏式馬可夫模型結構 3.1. 概念 3.2. 聲音模型的建立 3.3. 連續聲音的辨識 4. 實驗 4.1. 資料來源及描述 4.1.1. 資料描述 4.1.2. 定義事件與標音 4.1.3. 訓練與辨識 4.2. 提升辨識率-流程與實驗 實驗一 實驗二 實驗三 實驗四 實驗五 頻譜中心(Spectrum Centroid ) 頻譜離散度(Spectrum Spread) 頻譜滑動(Spectral Rolloff) 5. 結論及未來工作 參考文獻

    [1]
    Xiong, Z., Radhakrishnan, R., Divakaran, A., Huang, T.S. “Audio Events Detection Based Highlights Extraction from Baseball, Golf and Soccer Games in a Unified Framework ", University of Illinois at Urbana-Champaign,2003
    [2]
    S.-C. Chen,M.-L. Shyu,C. Zhang,L. Luo, “Detection Of Soccer Goal Shots Using Joint Multimedia Features And Classification Rules” Florida International University, University of Miami,2003
    [3]
    Z. Xiong, R.Radhakrishnan, A. Divakaran, T. Huang, “Comparing MFCC and MPEG-7 Audio Features for Feature Extraction, Maximum Likelihood HMM and Entropic Prior HMM for Sports Audio Classification” , December 2003
    [4]
    Jinjun Wang, Changsheng Xu, Chng Eng Siong, Qi Tian” Sports Highlight Detection from Keyword Sequences Using HMM”, School of Computer Engineering, Nanyang Technological University, 2004
    [5]
    Hyoung-Gook Kim, Steffen Roeber, Amjad Samour, Thomas Sikora, Technische Univ. Berlin,” Detection of goal event in soccer videos”, Technical University of Berlin,2005
    [6]
    Christian Dittmar,” DRUM DETECTION FROM POLYPHONIC AUDIO VIA DETAILED ANALYSIS OF THE TIME FREQUENCY DOMAIN”,2005
    [7]
    Jun-Jin Huang, Jhing-Fa Wang,” Spoken Sentence Retrieval Based on MPEG-7 Audio Low-Level Descriptors”, Department of Electrical Engineering National Cheng Kung University, Taiwan.July 21 2003

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE