簡易檢索 / 詳目顯示

研究生: 劉怡君
Yi-Chun Liu
論文名稱: 利用樹狀體靜電錯合與液晶定向技術建構DNA有序奈米結構
Ordered DNA Nanostructures from Electrostatic Complexation with Dendrimer and Liquid Crystal Rubbing Techniques
指導教授: 陳信龍
Hsin-Lung Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 94
語文別: 英文
論文頁數: 104
中文關鍵詞: DNA/dendrimer complexesDNA condensationpearl-chain nanowiresrubbed polyimide film
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • DNA-based nanotechnology has been propelled by the use of DNA molecules as the building blocks or the templates for controllable nanostructures. To control the higher-level organization of DNA molecules remains to be a challenge in nanotechnology. DNA condensation induced by the presence of multivalent cations is considered as an approach to attain ordered DNA structures.
    In this study, PAMAM dendrimer was used as the condensing agent. The self-assembly behavior of the complexes of DNA with fully surface-protonated poly(amidoamine) (PAMAM) dendrimer of generation four as a function of the overall complex composition. The complex composition (x) was expressed by the molar ratio of the positively charged ammonium groups in the dendrimer to the DNA base pairs. The complexation was found to result in DNA condensation through which the dendrimer-bound DNA chains aggregated significantly to form ordered structures. A condensed nematic phase in which the locally oriented DNA chains did not exhibit coherent positional order formed at x = 2. Although the numbers of positive and negative charges were identical at this composition, the charge matching was frustrated by the DNA-DNA repulsion which limited the number of DNA chains surrounding each dendrimer molecule. Therefore, the nematic mesophase was built up by the irregularly packed square columnar cells (with each dendrimer molecule surrounded by four DNA chains in each cell), yielding defective DNA networks with the average interhelical distance of 4.2 nm. A significant fraction of the phosphate groups on the DNA chains in the network remained unbound to the dendrimer due to limited supply of dendrimer molecules. The condensed DNA structure transformed into a long-range ordered square columnar phase with the interhelical distance of 4.25 nm at x = 4.0. Here the number of dendrimer became abundant enough to maximize the charge matching for the DNA chains, and the interconnection of the square columnar unit cells led to a long-range ordered lattice.
    We also demonstrate the coupling between the phenomenon of DNA condensation and the concept of DNA-templated NP assembly to prepare spatially organized nanowires with pearl-chain morphology. Electrostatic complexation of gold NP-embedded dendrimers with DNA brought about the condensation of the dendrimer on DNA and a spontaneous aggregation and ordering of the DNA chains, yielding nanowires with nematic order in thin film and bulk state. The present study revealed a bio-templating approach for fabricating nanostructured materials exhibiting special properties.
    Finally, a highly ordered dense DNA array on rubbed polyimide film was prepared. AFM images showed two-dimensional dense arrays for both linear and calf thymus DNA. We attributed the ordering to be driven by the condensation of DNA on rubbed polyimide. However, only DNA molecules on polyimide film within ca. 1.0 nm in thickness could be aligned. DNA molecules distant from the interface could hardly be affected by the rubbed polyimide. In addition to stretched DNA molecules on the substrate, DNA bundles were also visible. These DNA bundles were mechanically stronger and they could provide more binding and nucleation sites for the assembly of NPs toward nanowire structure.


    TABLE OF CONTENT………………………………………………I LIST OF TABLES..................IV LIST OF FIGURES………………………………………………V CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 1.1 Background…………………1 1.2 Literature Review…………………5 1.2.1 A Brief Overview of PAMAM Dendrimers A. Chemical structure………………………5 B. Internal structure………………………10 C. Bio-applications of PAMAM Dendrimers………13 D. PAMAM Dendrimer / Metal Hybrids.........15 1.2.2 Characterization of DNA-dendriemr complexes A. The Binding Interactions in DNA-Dendrimer Complexes..............................19 B. Self-Assembled Nanostructures of DNA-dendrimer Complexes........ .............23 1.3 Motivation of the Study and Overview of the Dissertation..........................34 1.4 References………………………………39 2. MESOMORPHIC COMPLEXES OF POLY(AMIDO AMINE) DENDRIMER WITH DNA 2.1 Introduction………………………43 2.2 Experimental Section………………………45 2.2.1 Materials……………………45 2.2.2 Complex Preparations……………45 2.2.3 UV-vis Measurements…………46 2.2.4 Small Angle X-ray Scattering (SAXS) Measurement..46 2.3 Results and Discussion…………………47 2.4 Conclusions……………………65 2.5 References……………………67 2.6 Supporting Information………………69 3. DNA CONDENSATION INDUCED BY NANOPARTICLE -EMBEDDED DENDRIMER LEADING TO PEARL-CHAIN NANOWIRES 3.1 Introduction………………………70 3.2 Experimental Section……………………73 3.2.1 Preparations of Gold NP-embedded dendrimer and its complex with DNA……………………73 3.2.2 Atomic force microscopy (AFM) experiment……73 3.2.3 Transmission electron microscopy (TEM)experiment…74 3.2.4 Small angle x-ray scattering (SAXS)experiment…74 3.2.5 UV/Vis Measurement…………………………………74 3.2.6 Polarized Optical Microscopy (POM)……………74 3.3 Results and Discussion……………75 3.4 Conclusions………………………84 3.5 References…………………85 4. LARGE-SCALE ORDERED DNA ARRAY GUIDED BY RUBBED POLYIMIDE FILM 4.1 Text..........................87 4.2 Methods………………99 4.2.1 Preparations of rubbed polyimide films on substrate.....99 4.2.2 Preparation of DNA monolayer on rubbed polyimide films…100 4.2.3 Atomic force microscopy (AFM) experiment………100 4.3 References……………………101 LIST OF PUBLICATIONS……………………………………104

    1. Manning, G. S. Quart. Rev. Biophys. 1978, 11, 179.
    2. Record, M. T.; Mazur, S. J.; Melancon, P.; Roe, J. H.; Shaner, S.; Unger, L. Annu. Rev. Biochem., 1981, 50, 997.
    3. Sharp, K.; Honig, B. Annu. Rev. Biophys. Biophys. Chem., 1990, 19, 301.
    4. Bloomfield, V. A. Biopolymers 1991, 31, 1471.
    5. Andreasson, B; Nordenskiöld, L.; Schultz, J. Biophys.J. 1996, 70,2847.
    6. Kukowska-Latallo, J. F.; Bielinska, A. U.; Johnson, J.; Spindler, R.; Tomalia, D. A.; Baker, J. R. Proc. Matl. Acad. Sci. USA, 1996, 93, 4897
    7. Haensler, J.; Szoka, F. Bioconjug Chem. 1993, 4, 372-379
    8. Lasic, D. D.; Templeton, N. S. Adv. Drug Delivery Rev.1996, 20, 221
    9. Miller, A.D. Angew. Chem. Int. Ed. 1998, 37, 1768
    10. Braun,E.;Eichen,Y.;Sivan,U.;Ben-Yoseph,G. Nature 1998, 391,775
    11. Richter, J. Physica E, 2003, 16, 157-173
    12. Patolsky,F.;Weizmann,Y.;Lioubashevski,O.;Willner,I. Angew. Chem. Int. Ed. Engl, 2002, 41,2323
    13. Sastry, M.; Kumar, A.; Datar, S. S.; Dharmadhikari, C. V.; Ganesh, K. N. Appl. Phys. Lett. 2001, 78, 2943
    14. Kumar, A.; Pattarkine, M.; Bhadbhade, M.; Mandale, A. B.; Ganesh, K. N.; Datar, S. S.; Dharmadhikari, C. V. ; Sastry, M. Adv. Mater. 2001, 13, 341–344.
    15. Warner, M. G..; Hutchison, J. E. Nat. Mater. 2003, 2, 272-277.
    16. Buhleier, E.; Wehner,W.; Vögtle, F. Synthesis, 1978, 155.
    17. Maciejewski, M. Macromol. Sci. Chem., 1982, A17, 689.
    18. deGennes, P. G.; Hervet, H. J. J. Phys. Lett. (Paris) 1983, 44:L351-L360.
    19. Tomalia, D. A. ;Baker, H.; Dewald, J. ; Hall, M.; Kallos, G..; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Polym. J., Tokyo, 1985, 17,117
    20. Newkome, G. R.; Yao, Z.-Q.; Baker, G.. R.; Gupta, V. K. J. Org. Chem., 1985, 50, 2003
    21. Hawker, C.J.; Fréchet, J.M.J. J. Chem. Soc. Chem. Commun. 1990,1010
    22. Miller, T. M.; Neenan, T. X. Chem.Mat.,1990, 2, 346-9
    23. Newkome, G.. R. Advances in Dentritic Macromolecules, JAI Press: Greenwich, CT, 1993.
    24. Fréchet, J.M.J.; Tomalia, D. A. ”Dendrimers and Other Dendritic polymers”, John Wiley & Sons, Ltd, 2001, 23
    25. Lothian-Tomalia, M. K.; Hedstrand, D. M. ; Tomalia, D. A. ; Padia, A. B. ; Hall, Jr. H. K. Tetrahedron, 1997, 53(45), 15495-15513
    26. Higgins, J.S.; Benoĩt, H.C. Polymers and Neutron Scattering, Clarendon Press, Oxford, 1994
    27. Prosa, T. J.; Bauer, B. J. ; Amis, E. J. Macromolecules, 2001, 34, 4897
    28. Brothers II,H.M.; Piehler, L.T.; Tomalia, D.A. J.Chromatogr.,1998, A814, 233
    29. Singh, P. Bioconjugate Chem., 1998, 9.54
    30. Piotti, M. E.; Rivera, F.; Hawker, C. J.; Fréchet, J. M. J. J. Am. Chem. Soc.,1999,121,9471
    31. Liu, M.; Fréchet, J. M. J. Pharmaceut. Sci. Technol. Today, 1999, 2, 393
    32. Zeng, F.; Zimmerman, S. C. Chem.Rev.1997, 97,1681
    33. Bieniarz, C. Dendrimers: Applications to pharmaceutical and Medicinal Chemistry,1998, 18, 55
    34. Stark, B.;Lach, C.;Frey, H.;Stuhn, B. Macro. Symp. 1999,146, 33
    35. Stathatos, E. ; Lianos, P. ; Strangar, U. L. ; Orel, B. ; Judeinstein, P. Lanmuir 2000, 16, 8672
    36. OttaViani, M. F. ; Bossmann, S. ; Turro, N. J. ; Tomalia, D. A. J. of the Amer. Chem. Soc. 1994, 116, 661
    37. Grőhn, F.; Bauer, B. J. ; Akpalu, Y. A. ; Jackson, C. L. ; Amis, E. J. Macromolecules 2000, 33, 6042-6050
    38. Esumi, K.; Isono, R.; Yoshimura, T. Langmuir 2004, 20, 237-243.
    39. Hovestad, N. J.; Hoare, J. L.; Jastrzebski, J. T. B. H.; Canty, A. J.; Smeets, W. J. J.; Spek, A. L.; van Koten, G.. Organometallics 1999, 18(16), 2970-2980.
    40. Zhang, C.; O'Brien, S.; Balogh, L. Journal of Physical Chemistry B, 2002, 106(40), 10316-10321.
    41. Sooklal, K.; Hanus, L. H.; Ploehn, H. J.; Murphy, C. J. Adv. Mater. 1998, 10, 1083-1087
    42. Strable, E.; Bulte, J. W. M.; Moskowitz, B.; Vivekanandan, K.; Allen, M.; Douglass, T. Chem. Mater. 2001, 13, 2201-2209
    43. Zhao, M. Q. ; Tokuhisa, H. ; Crooks, R. M. Angewandte Chemie-International Ed.,1997, 35, 2596
    44. Bielinska, A. U.; Kukowska-Latallo, J. F.; Baker J. R. Jr. Biochim. Biophys. Acta, 1997, 1353, 180-190.
    45. Baeza, I.; Gariglio, P.; Rangel, L. M.; Chavez, P.; Cervantes, L. ; Arguello, C.; Wong, C.; Montanez, C. Biochemistry 1987, 26, 6387-6392.
    46. Gosule, L. C.; Schellman, J. A. Nature 1976, 259, 333-335.
    47. Zimmerman, S. B.; Harrison, B. Proc. Natl. Acad. Sci. U.S.A 1987, 84, 1871-1875
    48. Matthews, H. R. Bioessays 1993, 15, 561-566.
    49. Oller, A. R.; Vanden, B. W.; Conrad, M.; Topal, M. D. Biochemistry 1991, 30, 2543-2549.
    50. Post, C. B.; Zimm, B. H. Biopolymers 1982, 21, 2139-2160.
    51. Celano, P.; Baylin, S. B.; Casero, R. A. Jr. J. Biol. Chem. 1989, 264, 8922-8927.
    52. Bielinska, A.U.; Kukowska-Latallo, J.F.; Johnson, J.; Tomalia, D. A.; Baker, J. R. Jr. Nucleic Acids Res. 1996, 24, 2176-2182.
    53. Raczka, E.; Kukowska-Latallo, J. F.; Rymaszewski, M.; Chen, C.; Baker, J. R. Jr. Gene Ther.1998, 5, 1333-1339.
    54. Tang, M.; Redemann, C. T.; Szoka, F. C. Jr. Bioconjugate Chem. 1996, 7, 703-714.
    55. Rau, D. C.; Parsegian, V. A. Biophys. J. 1992, 61, 246-259
    56. Bielinska, A. U.; Chen, C.; Johnson, J.; Baker, J. R. Jr. Bioconj. Chem., 1999, 10, 843-850
    57. Berliner L. J.; Reuben, J. Eds. Biological Magnetic Resonance. Spin Labeling, Theory and Applications; Plenum Press: New York, 1989; Vol. 8.
    58. Ottaviani, M. F.; Sacchi, B.; Turro, N. J.; Chen, W.; Jockusch, S.; Tomalia, D. A. Macromolecules ,1999, 32, 2275-2282
    59. Ottaviani, M. F.; Furini, F.; Casini, A.; Turro, N. J.; Jockusch, S.; Tomalia, D. A.; Messori, L. Macromolecules 2000, 33, 7842-7851
    60. Chen, W.; Turro, N. J. ; Tomalia, D. A. Langmuir 2000, 16, 15-19
    61. Saenger, W. Principles of Nucleic Acid Structure; Springer-Verlag: New York, 1984
    62. LePecq, J.-B.; Paoletti, C. J. Mol. Biol. 1967, 27, 87.
    63. Jones, R. L.; Lanier, A. C.; Keel, R. A.; Wilson, W. D. Nucleic Acids Res. 1980, 8, 1613.
    64. Evans, H. M. ; Ahmad, A.; Ewert, K. ; Pfohl,T.; Martin-Herranz, A.; Bruinsma, R. F.; Safinya, C. R. Phys Rev Lett, 2003, 91,7,075501-1
    65. Mitra, A.; Imae, T. Biomacromolecules 2004, 5, 69-73
    66. Maeda, Y.; Matsumoto, T.; Kawai, T. Appl. Surf. Sci. 1999, 140,400.
    67. Prosa, T. J.; Bauer, B. J.; Amis, E. J. Macromolecules 2001, 34, 4897.
    68. Tomalia, D. A.; Hall, M.; Hedstrand, D. M. J. Am. Chem. Soc.1987, 109, 1601.
    69. Bielinska, A. U.; Chen, C.; Johnson, J.; Baker, J. R., Jr. Bioconjugate Chem. 1999, 10, 843.
    70. Shchepinov, M. S.; Udalova, I. A.; Bridgman, A. J.; Southern, E. M. Nucleic Acid Res. 1997, 25, 4447.
    71. Bielinska, A. J. Polym. Mater. Sci. Eng. 1995, 73, 273.
    72. Boussif, O.; Lezoualc’h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.; Behr, J.-P. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 7297.
    73. Tang, M.; Redemann, C. T.; Szoka, F. C., Jr. Bioconjugate Chem. 1996, 7, 703.
    74. Haensler, J.; Szoka, F. C., Jr. Bioconjugate Chem. 1993, 4, 372.
    75. Ottaviani, M. F.; Sacchi, B.; Turro, N. J.; Chen, W.; Jockusch, S.; Tomalia, D. A. Macromolecules 1999, 32, 2275.
    76. Ottaviani, M. F.; Furini, F.; Casini, A.; Turro, N. J.; Jockusch, S.; Tomalia, D. A.; Messori, L. Macromolecules 2000, 33, 7842.
    77. Chen, W.; Turro, N. J.; Tomalia, D. A. Langmuir 2000, 16, 15.
    78. Stryer, L. Biochemistry; W.H. Freeman and Company: San Francisco, 1981.
    79. Evans, H. M.; Ahmad, A.; Ewert, K.; Pfohl, T.; Martin-Herranz, A.; Bruinsma, R. F.; Safinya, C. R. Phys. Rev. Lett. 2003, 91, 7, 075501-1.
    80. Dias, R.; Mel’nikov, S.; Lindman, B.; Miguel, M. G. Langmuir 2000, 16, 9577.
    81. Cakara, D.; Kleimann, J.; Borkovec, M. Macromolecules 2003, 36, 4201.
    82. Chen, W.; Tomalia, D. A.; Thomas, J. L. Macromolecules 2000, 33, 9169.
    83. Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: New York, 1989.
    84. Roe, R.-J. Methods of X-ray and Neutron Scattering in Polymer Science; Oxford University Press: New York, 2000.
    85. Tsuboi, A.; Izumi, T.; Hirata, M.; Xia, J.; Dubin, P. L.; Kokufuta, E. Langmuir 1996, 12, 6295.
    86. Takahashi, D.; Kubota, Y.; Kokai, K.; Izumi, T.; Hirata, M.; Kokufuta, E. Langmuir 2000, 16, 3133.
    87. Record, M. T., Jr.; Anderson, C. F.; Lohman, T. M. Q. Rev. Biophys. 1978, 11, 103.
    88. Park, S.Y.; Bruinsma, R. F.; Gelbart, W. M. Europhys. Lett. 1999, 46, 454.
    89. Bruinsma, R. Eur. Phys. J. B 1998, 4, 75.
    90. Knaapila, M.; Stepanyan, R.; Horsburgh, L. E.; Monkman, A. P.; Serimaa, R.; Ikkala, O.; Subbotin, A.; Torkkeli, M.; ten Brinke, G. J. Phys. Chem. B 2003, 107, 14199.
    91. Podgornik, R.; Rau, D. C.; Parsegian, V. A. Macromolecules 1989, 22, 1780.
    92. Tomalia, D. A.; Naylor, A. M.; Goddard III, W. A. Angew. Chem., Int. Ed. Engl. 1990, 29, 138.
    93. Mu¨ ller, J. J. J. Appl. Crystallogr. 1983, 16, 74.
    94. Hagerman, P. J. Annu. Rev. Biophys. Biophys. Chem. 1988, 17, 265.
    95. Collier, C. P.; Saykally, R. J.; Shiang, J. J.; Henrichs, S. E.; Heath, J. R. Science 1997, 277, 1978.
    96. Beverly, K. C.; Sampaio, J. F.; Heath, J. R. J. Phys. Chem. B 2002, 106, 2131.
    97. Destefani, C. F.; Marques, G. E. Physica E 2000, 7, 786.
    98. Braun, E.; Eichen, Y.; Sivan, U.; Ben-Yoseph, G. Nature 1998, 391, 775.
    99. Shenton, W.; Douglas, T.; Young, M.; Stubbs, G.; Mann, S. Adv. Mater. 1999, 11, 253.
    100. Dieluweit, S.; Pum, D.; Sleytr, U. B. Supramol. Sci. 1998, 5 (1-2), 15.
    101. Mertig, M.; Kirsch, R.; Pompe, W.; Wahl, R.; Bo¨hm, K. J.; Unger, E.; Sadowski, G. Thin Solid Films 1997, 305, 248.
    102. Coffer, J. L.; Bigham, S. R.; Li, X.; Pinizzotto, R. F.; Rho, Y. G.; Pirtle, R. M.; Pirtle, I. L. Appl. Phys. Lett. 1996, 69, 3851.
    103. Kumar, A.; Pattarkine, M.; Bhadbhade, M.; Mandale, A. B.; Ganesh, K. N.; Datar, S. S.; Dharmadhikari, C. V.; Sastry, M. Adv. Mater. 2001, 13, 341.
    104. Sastry, M.; Kumar, A.; Datar, S. S.; Dharmadhikari, C. V.; Ganesh, K. N. Appl. Phys. Lett. 2001, 78, 2943.
    105. Warner, M. G.; Hutchinson, J. E. Nat. Mater. 2003, 2, 272.
    106. Grohn, F.; Bauer, B. J.; Akpalu, Y. A.; Jackson, C. L.; Amis, E. J. Macromolecules 2000, 33, 6042.
    107. Zhao, M.; Sun, L.; Crooks, R. M. J. Am. Chem. Soc. 1998, 120 (19), 4877.
    108. Esumi, K.; Isono, R.; Yoshimura, T. Langmuir 2004, 20, 237.
    109. Zhang, C.; O’Brien, S.; Balogh, L. J. Phys. Chem. B 2002, 106 (40),10316.
    110. Evans, H. M.; Ahmad, A.; Ewert, K.; Pfohl, T.; Martin-Herranz, A.; Bruinsma, R. F.; Safinya, C. R. Phys. Rev. Lett. 2003, 91 (7),075501-1.
    111. (a) Friedel, G. Ann. Phys. (Paris) 1922, 18, 273. (b) Nehring, J.; Saupe, A. J. Chem. Soc., Faraday Trans. 2 1972, 68, 1. (c) Saupe, A. Mol. Cryst. Liq. Cryst. 1973, 21, 211.
    112. Swanson, T. JCPDS ICDD 04-0784, 1953.
    113. Leng, M.; Felsenfeld, G. Proc. Natl. Acad. Sci. U.S.A. 1966, 56, 1325.
    114. Moreno-Herrero, F.; Colchero, J.; Baro, A. M. Ultramicroscopy 2003, 96, 167.
    115. Zhang, J.; Ma, Y.; Stachura, S.; He, H. Langmuir 2005, 21, 4180.
    116. Michalet, X.; Ekong, R.; Fougerousse, F.; Rousseaux, S.; Schurra, C.; Hornigold, N.; van Slegtenhorst, M.; Wolfe, J.; Povey, S.; Beckmann, J. S.; Bensimon, A. Science 1997, 277, 1518.
    117. Yokota, H.; Johnson, F.; Lu, H.; Robinson, R. M.; Belu, A. M.; Garrison, M. D.; Ratner, B. D.; Trask, B. J.; Miller, D. L. Nucleic Acids Res. 1997, 25, 1064.
    118. Nakao, H.; Hayashi, H.; Yoshino, T.; Sugiyama, S.; Otobe, K.; Ohtani, T. Nano Lett. 2002, 2, 475.
    119. Deng, Z.; Mao, C. Nano Lett. 2003, 3, 1545.
    120. Li, J.; Bai, C.; Wang, C.; Zhu, C.; Lin, Z.; Li, Q.; Cao, E. Nucleic Acids Res. 1998, 26, 4785.
    121. Mauguin, C. Bull. Soc. fr. Miner. 1911, 34, 71-76
    122. Depp, S.W.; Howard, W. E. Scient. Am.1993, 268, 90-97
    123. Berreman, D. W. Phys. Rev. Lett. 1972, 28, 1683-1686
    124. Zhu, Y. M.; Wang, L.;Lu, Z. H.;Wei,Y.; Chen, X. X.; Tang, J.H. Appl. Phys. Lett. 1994, 65, 49-51
    125. Ishihara, S.; Wakemoto, H.; Nakazima, K.; Matsuo, Y. Liq. Cryst. 1989, 4, 669
    126. Lee, E. S.; Miyashita, T.; Uchida, T. Jpn. J. Appl. Phys. 1993, 32, L1339
    127. Lee, E. S.; Saito, Y.; Uchida, T. Jpn. J. Appl. Phys. 1993, 32, L1822
    128. Barmentlo, M.; van Aerle, N.A.J.M.; Hollering, R.W.J.; Damen, J. P.M. J. Appl. Phys. 1992, 71, 4799
    129. Nakao, H.; Hayashi, H.; Yoshino, T.; Sugiyama, S.; Otobe, K.; Ohtani, T. Nano letters 2002, 2(5), 475-479
    130. Geary, J. M.; Goodby, J. W.; Kmetz, A. R.; Patel, J. S. J. Appl. Phys.1987, 62, 4100
    131. Aoyama, H.; Yamazaki, Y.; Matsumura, N.; Mada, H.; Kobayashi, S. Mol. Cryst. Liq. Cryst. 1981, 72, 127
    132. Van Aerle, N. A. J. M.; Barmentlo, M.; Hollering, R. W. J. J. Appl. Phys. 1993, 74, 3111-3120
    133. Han, K. Y.; Vetter, P.; Uchida, T. Jpn. J. Appl. Phys. 1993, 32(9A), L1242-L1244
    134. Toney, M. F.; Russell, T. P.; Logan, J. A.; Kikuchi, H.; Sands, J. M.; Kumar, S. K. Nature 1995, 374, 709-711
    135. Murata, M.; Yoshida, E.; Uekita, M.; Tawada, Y. Jpn. J. Appl. Phys. 1993, 32, L676-L678
    136. Thomas, E. A.; Zupp, T. A.; Fulghum, J. E.; Fredley, D. S.; West, J. L. Mol. Cryst. Liq. Cryst. 1994, 250, 193-208
    137. Seo, D. S.; Muroi, K.; Isogami, T.; Matsuda, H.; Kobayashi, S. Jpn. J. Appl. Phys. 1992, 31, 2156
    138. Sakamoto, K.; Arafune, R.; Ito, N.; Ushioda, S.; Suzuki, Y.; Morokawa, S. Jpn. J. Appl. Phys. 1994, 33, L1323-L1326
    139. Hirosawa, I.; Sasaki, N.; Kimura, H. Jpn. J. Appl. Phys. 1999, 38, L583-L585
    140. Wei, X.; Zhuang, X.; Hong, S. C.; Goto, T.; Shen, Y. R. Phys. Rev. Lett. 1999, 82, 4256
    141. Stőhr, J.; Samant, M.G..; Cossy-Favre, A.; Diaz, J.; Momoi,Y.; Odahara, S.; Nagata, T. Macromolecules 1998, 31, 1942
    142. Lee, K.W.; Paek, S. H.; Lien, A.; Durning, C.; Fukuro, H. Macromolecules 1996, 29, 8894-8899
    143. Lee, S.W.; Chae, B.; Lee, B.; Choi, W.; Kim, S. B.; Kim, S.I.; Park, S. M.; Jung, J.C.; Lee, K. H.; Ree, M. Chem. Mater. 2003, 15, 3105
    144. Moreno-Herrero, F. ; Colchero, J. ; Baro, A. M. Ultramicroscopy 2003, 96, 167-174
    145. Fang, Y.; Yang, J. J. Phys. Chem. B 1997, 101, 441-449
    146. Huang, Y.; Duan, X.; Wei, Q.; Lieber, C. M. Science, 2001, 291, 630
    147. Whang, D.; Jin, S.; Wu, Y.; Lieber, C. M.; Nano Lett. 2003, 3,1255
    148. Uchida, T.; Hirano, M.; Sakai, H. Liq. Cryst. 1989, 5, 1127

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE