簡易檢索 / 詳目顯示

研究生: 戴順麒
Dai, Shun-Qi
論文名稱: 二硒化鎢成長及其摻雜的密度泛函理論計算
Density Functional Theory Calculation And Processing Of Doping In Tungsten Diselenide
指導教授: 邱博文
Chiu, Po-Wen
口試委員: 張文豪
Chang, Wen-Hao
鄭舜仁
Cheng, Shun-Jen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 80
中文關鍵詞: 二硒化鎢摻雜
外文關鍵詞: Tungsten Diselenide, Doping
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過渡金屬二硫族化合物(TMDCs)是一種新型的二維材料,它們具有半導體性和金屬性。其中二硒化鎢(WSe2)是過渡金屬二硫族化合物二維半導體材料的典型代表。單層二硒化鎢是直接能隙的半導體,且具有適當的能隙,大約為1.6 eV。然而二硒化鎢電晶體的金半接觸很大程度上限制了其電學性能,而二硒化鎢的摻雜是限制金半接觸的主要因素。本實驗採用化學氣相沉積的方法成長出近50  m 的單層二硒化鎢單晶。並使用紫外光臭氧熱處理人工可控地製造缺陷,來對其進行金屬原子摻雜。最後,本實驗使用密度泛函理論對摻雜的二硒化鎢進行能帶計算來觀察金屬原子摻雜對二硒化鎢費米面變化的影響。為未來改進二硒化鎢電晶體的金半接觸做前期性探究。


    Transition-metal Dichalcogenide(s TMDCs),which ranges frommetal to semiconductor, is
    a kind of novel 2D materials. Tungsten Diselenide(WSe2) is a model of the 2D semiconductor.
    The monolayer WSe2 has a direct bandgap, which is suitable large about 1.6 eV. As we all
    known that the surface of ideal monolayer WSe2 with lone electron pairs does not have dangling
    bond. Thus, the Fermi level pinning effect of ideal WSe2 is not very strong and the metalsemiconductor
    source drain contact of the WSe2 MOSFET decreases the short channel effect
    rapidly. Due to the lack of effcient doping methord of WSe2, it is diffcult to make the contact
    of WSe2 FET, which limits the performance of the transistor. In this experiment, We use the
    CVD methord to grow the monolayer WSe2 single crystal, whose domain size is about 50 
    m. Then we use UV Ozone thermal oxiadation methord to creat controlable defects on WSe2
    single crystal artificially and we also dope WSe2 with various kinds of metal atoms. Finaly, We
    use DFT methord to calculate the band diagram of the metal atom doped monolayer WSe2.
    I

    目錄 Absrtact................................................................................................................................... I 論文摘要................................................................................................................................. III 致謝......................................................................................................................................... V 目錄...................................................................................................................................... VIII 圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIV 第一章緒論........................................................................................................................... 1 1.1 半導體科技的發展. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 半導體科技的限制. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 論文結構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 第二章二維過渡金屬二硫族化合物................................................................................... 7 2.1 二維過渡金屬二硫族化合物概述. . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 TMDC 之結構與特性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 TMDC 之晶體結構. . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.2 TMDC 之電子能帶結構. . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.3 TMDC 之光學特性. . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 TMDC 之改質. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 TMDC 之非揮發性改質. . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.2 TMDC 之揮發性改質. . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4 TMDC 之拉曼光譜與光致螢光光譜. . . . . . . . . . . . . . . . . . . . . . 17 2.4.1 拉曼光譜. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.2 光致螢光光譜. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 第三章化學氣相沉積........................................................................................................... 23 3.1 薄膜的成長. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 V 目錄 3.2 化學氣相沉積原理與機制. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.1 常壓化學氣相沉積. . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.2 氣流對化學氣相沉積的影響. . . . . . . . . . . . . . . . . . . . . . 27 3.2.3 低壓化學氣相沉積. . . . . . . . . . . . . . . . . . . . . . . . . . . 29 第四章二硒化鎢單晶的化學氣相沉積與檢測................................................................... 33 4.1 WSe2 低壓化學氣相沉積. . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.1.1 實驗設備. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.1.2 實驗流程與參數調整. . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 WSe2 單晶的檢測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2.1 拉曼光譜檢測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.2 光致螢光光譜檢測. . . . . . . . . . . . . . . . . . . . . . . . . . . 40 第五章二硒化鎢之紫外臭氧處理....................................................................................... 43 5.1 實驗設備與流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2 WSe2 的紫外臭氧處理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.3 WSe2 的金屬原子摻雜. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 第六章二維材料的密度泛函理論計算............................................................................... 55 6.1 密度泛函理論原理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 6.2 實驗設計與流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.3 單層WSe2 之能帶計算. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.4 單層WSe2 之金屬原子吸附性摻雜. . . . . . . . . . . . . . . . . . . . . . . 64 6.5 單層WSe2 之硒原子空位摻雜的計算結果. . . . . . . . . . . . . . . . . . . 65 6.6 單層WSe2 之金屬原子替代性摻雜的計算結果. . . . . . . . . . . . . . . . 67 第七章

    [1] http://history-computer.com/ModernComputer/Basis/audion.html .
    [2] https://en.wikipedia.org/wiki/ENIAC .
    [3] J. Bardeen and W. H. Brattain, Phys. Rev. 74, 230 (1948).
    [4] http://socks-studio.com/2011/03/06/evolution-of-the-microchip-1958-1981/ .
    [5] http://electroiq.com/blog/2013/08/monolithic-3d-is-now-on-the-roadmap-for-2019/ .
    [6] http://www.itrs.net/ .
    [7] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, Nature chemistry 5, 263
    (2013).
    [8] J. Wilson and A. Yoffe, Advances in Physics 18, 193 (1969).
    [9] Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. Tang, Physica B: Condensed Matter 406, 2254
    (2011).
    [10] W. Zhao, R. M. Ribeiro, and G. Eda, Accounts of chemical research 48, 91 (2014).
    [11] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Nano Lett. 10,
    1271 (2010).
    [12] X. Zhang, X.-F. Qiao, W. Shi, J.-B. Wu, D.-S. Jiang, and P.-H. Tan, Chemical Society Reviews 44,
    2757 (2015).
    [13] H. Sahin, S. Tongay, S. Horzum, W. Fan, J. Zhou, J. Li, J. Wu, and F. Peeters, Physical Review B
    87, 165409 (2013).
    [14] J.-P. Colinge, Silicon-on-Insulator Technology: Materials to VLSI: Materials to Vlsi (Springer Science
    & Business Media, 2004).
    [15] http://www.computerhistory.org/revolution/digital-logic/12/273 .
    [16] G. E. Moore, IEEE Solid-State Circuits Newsletter 3, 33 (2006).
    [17] M. Bohr, in Electron Devices Meeting (IEDM), 2011 IEEE International (IEEE, 2011) pp. 1–1.
    [18] K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, , I. Grigorieva, and
    A. Firsov, science 306, 666 (2004).
    [19] K. I. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, Solid
    State Communications 146, 351 (2008).
    [20] L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, and D. Akinwande,
    Nature nanotechnology 10, 227 (2015).
    [21] L. Pauling, The nature of the chemical bond and the structure of molecules and crystals: an introduction
    to modern structural chemistry, Vol. 18 (Cornell university press, 1960).
    [22] Z. Zhu, Y. Cheng, and U. Schwingenschlogl, Physical Review B 84, 153402 (2011).
    [23] W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and
    G. Eda, Nanoscale 5, 9677 (2013).
    [24] Y. Zhao, X. Luo, H. Li, J. Zhang, P. T. Araujo, C. K. Gan, J. Wu, H. Zhang, S. Y. Quek, and M. S.
    Dresselhaus, Nano letters 13, 1007 (2013).
    [25] X. Luo, Y. Zhao, J. Zhang, M. Toh, C. Kloc, Q. Xiong, and S. Y. Quek, Physical Review B 88,
    195313 (2013).
    [26] H. Terrones, E. Del Corro, S. Feng, J. Poumirol, D. Rhodes, D. Smirnov, N. Pradhan, Z. Lin,
    M. Nguyen, and A. Elias, Scientific reports 4 (2014).
    [27] J.-K. Huang, J. Pu, C.-L. Hsu, M.-H. Chiu, Z.-Y. Juang, Y.-H. Chang, W.-H. Chang, Y. Iwasa,
    T. Takenobu, and L.-J. Li, ACS nano 8, 923 (2013).
    [28] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan,
    and D. R. Zahn, Optics express 21, 4908 (2013).
    [29] A. Kumar and P. Ahluwalia, The European Physical Journal B 85, 1 (2012).
    [30] M. Zhang, J. Wu, Y. Zhu, D. O. Dumcenco, J. Hong, N. Mao, S. Deng, Y. Chen, Y. Yang, and
    C. Jin, ACS nano 8, 7130 (2014).
    [31] H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai,
    F. Kronast, and A. A. Unal, Proceedings of the National Academy of Sciences 111, 6198 (2014).
    [32] P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler,
    G. Clark, and N. J. Ghimire, Nature communications 6 (2015).
    [33] A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus,
    and D. Xiao, Nature nanotechnology 8, 634 (2013).
    [34] J. Huang, L. Yang, D. Liu, J. Chen, Q. Fu, Y. Xiong, F. Lin, and B. Xiang, Nanoscale 7, 4193
    (2015).
    [35] M. Koperski, K. Nogajewski, A. Arora, V. Cherkez, P. Mallet, J.-Y. Veuillen, J. Marcus, P. Kossacki,
    and M. Potemski, Nature nanotechnology 10, 503 (2015).
    [36] H.-V. Han, A.-Y. Lu, L.-S. Lu, J.-K. Huang, H. Li, C.-L. Hsu, Y.-C. Lin, M.-H. Chiu, K. Suenaga,
    C.-W. Chu, et al., ACS nano 10, 1454 (2016).
    [37] A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G.-H. Lee, T. F. Heinz,
    D. R. Reichman, D. A. Muller, and J. C. Hone, Nature materials 12, 554 (2013).
    [38] S. Li, S. Wang, D.-M. Tang, W. Zhao, H. Xu, L. Chu, Y. Bando, D. Golberg, and G. Eda, Applied
    Materials Today 1, 60 (2015).
    [39] D. L. Duong, G. H. Han, S. M. Lee, F. Gunes, E. S. Kim, S. T. Kim, H. Kim, Q. H. Ta, K. P. So,
    S. J. Yoon, et al., Nature 490, 235 (2012).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE