研究生: |
蕭嘉偉 Hsiao, Chia-Wei |
---|---|
論文名稱: |
粒線體 DNA T8993G 突變細胞質融合株中粒線體功能失調和細胞凋亡之機制探討 Mechanistic Investigation on Mitochondrial Dysfunction and Apoptosis in mtDNA T8993G Mutation Cybrids |
指導教授: |
黎耀基
Lai, Yiu-Kay 周美智 Jou, Mei-Jie |
口試委員: |
林智健
Lin, Chih-Chien 楊春茂 Yang, Chuen-Mao 彭宗義 Peng, Tsung-I |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 151 |
中文關鍵詞: | 粒線體 DNA 突變 、神經性肌肉無力 、運動失調 、視網膜色素病變 、心磷脂 、粒線體活性氧屬自由基 、粒線體過渡性通透 、粒線體鈣離子 、乙型澱粉樣胜肽 |
外文關鍵詞: | mtDNA T8993G, neurological muscle weakness, ataxia, retinitis pigmentosa, cardiolipin, mROS, MPT, mCa2+, amyloid-beta peptide |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類粒線體 DNA突變(mtDNA T8993G)會抑制粒線體複合體五(F1F0-ATPase),造成三磷酸腺苷(ATP)不足、進而導致死亡,臨床上常伴隨神經性肌肉無力、運動失調、視網膜色素病變(neurological muscle weakness、 ataxia、retinitis pigmentosa,所以又稱 NARP 突變)等症狀。該突變與其症狀之間的確切病理關係仍只受限在粒線體氧化壓力方面的研究。藉由非侵入式螢光探針搭配雷射掃描影像顯微鏡和 NARP 細胞質融合株 (帶有98% 突變基因) 及其親帶 143B 骨髓瘤細胞 (對照組),我們證明在鈣離子、氧化、脂質等壓力下,該突變會增加粒線體保護性磷脂質-心磷脂 (cardiolipin) 缺失,並改變粒線體動態。由於該突變抑制粒線體複合體五會使粒線體膜電位過極化,進而增加粒線體鈣單向轉運體 (mCa2+ uniporter) 的驅動力。當鈣離子壓力存在下,會增加鈣離子的吸收。因此我們更進一步深入探討該突變造成的鈣離子壓力如何去影響粒線體病變,包括鈣離子引發的粒線體活性氧屬自由基 (mROS) 形成、粒線體鈣離子、氧化壓力造成的心磷脂缺失。更確切來說,我們是探討該突變如何去影響粒線體過渡性通透 (MPT) 的活性,進而引發該突變造成的病變和細胞凋亡。我們探索暫時性粒線體過渡性通透 (t-MPT) 的調節如何在鈣離子壓力造成的細胞凋亡時,扮演保護性的角色。最後我們研究該突變引發的粒線體複合體五抑制是阿茲海默症的潛在風險因子,並且和長期暴露在乙型澱粉樣胜肽 (amyloid-beta peptide) 造成的毒性和細胞凋亡有關。我們證明乙型澱粉樣胜肽造成的非粒線體鈣離子依賴的粒線體活性氧屬自由基形成,會造成心磷脂依賴的粒線體過渡性通透致死調節。乙型澱粉樣胜肽不但增加粒線體活性氧屬自由基,也會增加粒線體活性氧屬自由基的傳播速度,造成粒線體膜電位去極化,降低鈣離子壓力。乙型澱粉樣胜肽造成的粒線體活性氧屬自由基會氧化和耗盡心磷脂,接著使粒線體斷裂、移動遲緩,並促使該突變造成的致死暫時性粒線體過渡性通透轉變成不可逆的永久性粒線體過渡性通透 (p-MPT)。而乙型澱粉樣胜肽造成的永久性粒線體過渡性通透,如果被還原成保護性的暫時性粒線體過渡性通透,則能維持膜電位並降低粒線體鈣離子到非致死程度,並增加粒線體鈣離子依賴的氧氣消耗。我們認為調控粒線體過渡性通透的活性也許有潛力成為和 NARP 症狀相關的阿茲海默病患的治療標的。
Human mtDNA T8993G mutation is often fatal due to it inhibits significantly mitochondrial complex V (F1F0-ATPase) to cause severe ATP deficiency for clinically symptoms of neurological muscle weakness, ataxia, and retinitis pigmentosa (the so-called NARP mutation). Precisely pathological link between the mutation and its final symptoms has been limited to enhanced mitochondrial oxidative stress. Using non-invasive fluorescence probe-coupled laser scanning imaging microscopy and NARP cybrids harboring 98% mutant genes along with its parental 143B osteosarcoma cells, we demonstrated that mtDNA T8993G mutation enhanced deletion of a protective mitochondrial phospholipid, cardiolipin (CL), and altered mitochondrial dynamics during apoptotic insults of Ca2+, oxidative and lipid stress. As mtDNA T8993G mutation-induced complex V inhibition significantly hyperpolarizes mitochondrial membrane potential (∆Ψm) which enhances the driving force for mitochondrial Ca2+ (mCa2+) uniporter to take up Ca2+ during Ca2+ stress. Furthermore, we investigated in detail how mtDNA T8993G mutation augmented-mCa2+ stress affects down streams of mitochondrial pathologies including mCa2+-mediated mitochondrial reactive oxygen species (mROS) formation and mCa2+- and mROS-mediated depletion of CL. Precisely, we investigated whether and how the alterations of the activity of the mitochondrial permeability transition (MPT) at resting and during mCa2+ stress contribute to mtDNA T8993G mutation-augmented mitochondrial pathologies and apoptosis. We explored whether the modulation of the transient-MPT (t-MPT) serves as a protective target in rescuing mtDNA T8993G mutation-augmented mCa2+ stress at resting and during mCa2+ stress-induced apoptosis. Lastly, we investigated mtDNA T8993G mutation-induced complex V inhibition is a potential risk factor for Alzheimer's disease (AD) and the pathological link for long-term exposure of amyloid-beta peptide (Aβ)-induced mitochondrial toxicity and apoptosis in NARP cybrids. We demonstrated that Aβ-augmented mCa2+-independent mROS formation for CL-dependent lethal modulation of the MPT. Aβ augmented not only the amount but also the propagation rate of mROS-induced mROS formation to significantly depolarize ∆Ψm and reduce Ca2+ stress. Aβ-augmented mROS oxidized and depleted CL thereby enhances mitochondrial fission and movement retardation, which promoted the NARP-augmented lethal t-MPT to switch its irreversible mode of permanent-MPT (p-MPT). Aβ-promoted p-MPT was reversed to a protective t-MPT, which preserved ∆Ψm and lowered elevated mCa2+ to sublethal levels for an enhanced mCa2+-dependent O2 consumption. We suggest that the activity of the MPT may potentially serve as a protective target in rescuing AD patients associated with NARP symptoms.
1. Kao, S.H., H.T. Chao, and Y.H. Wei, Multiple deletions of mitochondrial DNA are associated with the decline of motility and fertility of human spermatozoa. Mol Hum Reprod, 1998. 4(7): p. 657-66.
2. Senior, A.E., ATP synthesis by oxidative phosphorylation. Physiol Rev, 1988. 68(1): p. 177-231.
3. Mitchell, P., Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature, 1961. 191: p. 144-8.
4. Schon, E.A., et al., Therapeutic prospects for mitochondrial disease. Trends Mol Med, 2010. 16(6): p. 268-76.
5. DiMauro, S. and E.A. Schon, Mitochondrial respiratory-chain diseases. N Engl J Med, 2003. 348(26): p. 2656-68.
6. Baracca, A., et al., Catalytic activities of mitochondrial ATP synthase in patients with mitochondrial DNA T8993G mutation in the ATPase 6 gene encoding subunit a. J Biol Chem, 2000. 275(6): p. 4177-82.
7. White, S.L., et al., Genetic counseling and prenatal diagnosis for the mitochondrial DNA mutations at nucleotide 8993. Am J Hum Genet, 1999. 65(2): p. 474-82.
8. Mattiazzi, M., et al., The mtDNA T8993G (NARP) mutation results in an impairment of oxidative phosphorylation that can be improved by antioxidants. Hum Mol Genet, 2004. 13(8): p. 869-79.
9. DiMauro, S. and E.A. Schon, Mitochondrial DNA mutations in human disease. Am J Med Genet, 2001. 106(1): p. 18-26.
10. DiMauro, S., M. Hirano, and E.A. Schon, Approaches to the treatment of mitochondrial diseases. Muscle Nerve, 2006. 34(3): p. 265-83.
11. DiMauro, S. and M. Mancuso, Mitochondrial diseases: therapeutic approaches. Biosci Rep, 2007. 27(1-3): p. 125-37.
12. Alexeyev, M.F., et al., Selective elimination of mutant mitochondrial genomes as therapeutic strategy for the treatment of NARP and MILS syndromes. Gene Ther, 2008. 15(7): p. 516-23.
13. Gardner, J.L., et al., Experimental strategies towards treating mitochondrial DNA disorders. Biosci Rep, 2007. 27(1-3): p. 139-50.
14. Taylor, R.W., Gene therapy for the treatment of mitochondrial DNA disorders. Expert Opin Biol Ther, 2005. 5(2): p. 183-94.
15. Smith, P.M., et al., Strategies for treating disorders of the mitochondrial genome. Biochim Biophys Acta, 2004. 1659(2-3): p. 232-9.
16. D'Souza, G.G. and V. Weissig, Approaches to mitochondrial gene therapy. Curr Gene Ther, 2004. 4(3): p. 317-28.
17. Khan, S.M. and J.P. Bennett, Jr., Development of mitochondrial gene replacement therapy. J Bioenerg Biomembr, 2004. 36(4): p. 387-93.
18. Boveris, A. and B. Chance, The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J, 1973. 134(3): p. 707-16.
19. Roth, E., Oxygen free radicals and their clinical implications. Acta Chir Hung, 1997. 36(1-4): p. 302-5.
20. Simonian, N.A. and J.T. Coyle, Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol, 1996. 36: p. 83-106.
21. Moreno, A.J., D.J. Santos, and C.M. Palmeira, Ischemic heart disease: the role of mitochondria--carvedilol prevents lipid peroxidation of mitochondrial membranes. Rev Port Cardiol, 1998. 17 Suppl 2: p. II63-77.
22. Cardoso, S.M., C. Pereira, and R. Oliveira, Mitochondrial function is differentially affected upon oxidative stress. Free Radic Biol Med, 1999. 26(1-2): p. 3-13.
23. Wei, Y.H., Oxidative stress and mitochondrial DNA mutations in human aging. Proc Soc Exp Biol Med, 1998. 217(1): p. 53-63.
24. Pascale, A. and R. Etcheberrigaray, Calcium alterations in Alzheimer's disease: pathophysiology, models and therapeutic opportunities. Pharmacol Res, 1999. 39(2): p. 81-8.
25. Orrenius, S. and P. Nicotera, The calcium ion and cell death. J Neural Transm Suppl, 1994. 43: p. 1-11.
26. Di Lisa, F., et al., The role of mitochondria in the salvage and the injury of the ischemic myocardium. Biochim Biophys Acta, 1998. 1366(1-2): p. 69-78.
27. Rizzuto, R., et al., Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science, 1993. 262(5134): p. 744-7.
28. Rizzuto, R., et al., Calcium and apoptosis: facts and hypotheses. Oncogene, 2003. 22(53): p. 8619-27.
29. Toescu, E.C., Mitochondria and Ca(2+) signaling. J Cell Mol Med, 2000. 4(3): p. 164-175.
30. Detmer, S.A. and D.C. Chan, Functions and dysfunctions of mitochondrial dynamics. Nat Rev Mol Cell Biol, 2007. 8(11): p. 870-9.
31. Okamoto, K. and J.M. Shaw, Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet, 2005. 39: p. 503-36.
32. Sesaki, H. and R.E. Jensen, Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J Cell Biol, 1999. 147(4): p. 699-706.
33. Legros, F., et al., Organization and dynamics of human mitochondrial DNA. J Cell Sci, 2004. 117(Pt 13): p. 2653-62.
34. Jou, M.J., Pathophysiological and pharmacological implications of mitochondria-targeted reactive oxygen species generation in astrocytes. Adv Drug Deliv Rev, 2008. 60(13-14): p. 1512-26.
35. Alavi, M.V., et al., A splice site mutation in the murine Opa1 gene features pathology of autosomal dominant optic atrophy. Brain, 2007. 130(Pt 4): p. 1029-42.
36. Chen, H., et al., Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol, 2003. 160(2): p. 189-200.
37. Davies, V.J., et al., Opa1 deficiency in a mouse model of autosomal dominant optic atrophy impairs mitochondrial morphology, optic nerve structure and visual function. Hum Mol Genet, 2007. 16(11): p. 1307-18.
38. Alexander, C., et al., OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet, 2000. 26(2): p. 211-5.
39. Delettre, C., et al., Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet, 2000. 26(2): p. 207-10.
40. Zuchner, S., et al., Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet, 2004. 36(5): p. 449-51.
41. Parone, P.A., et al., Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA. PLoS One, 2008. 3(9): p. e3257.
42. Waterham, H.R., et al., A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med, 2007. 356(17): p. 1736-41.
43. Karbowski, M. and R.J. Youle, Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ, 2003. 10(8): p. 870-80.
44. Jou, M.J., et al., Visualization of melatonin's multiple mitochondrial levels of protection against mitochondrial Ca(2+)-mediated permeability transition and beyond in rat brain astrocytes. J Pineal Res, 2010. 48(1): p. 20-38.
45. Jou, M.J., Melatonin preserves the transient mitochondrial permeability transition for protection during mitochondrial Ca(2+) stress in astrocyte. J Pineal Res, 2011. 50(4): p. 427-35.
46. Peng, T.I. and M.J. Jou, Oxidative stress caused by mitochondrial calcium overload. Ann N Y Acad Sci, 2010. 1201: p. 183-8.
47. Peng, T.I., et al., Visualizing common deletion of mitochondrial DNA-augmented mitochondrial reactive oxygen species generation and apoptosis upon oxidative stress. Biochim Biophys Acta, 2006. 1762(2): p. 241-55.
48. Jou, M.J., et al., Melatonin protects against common deletion of mitochondrial DNA-augmented mitochondrial oxidative stress and apoptosis. J Pineal Res, 2007. 43(4): p. 389-403.
49. Hollenbeck, P.J. and W.M. Saxton, The axonal transport of mitochondria. J Cell Sci, 2005. 118(Pt 23): p. 5411-9.
50. Chang, D.T. and I.J. Reynolds, Mitochondrial trafficking and morphology in healthy and injured neurons. Prog Neurobiol, 2006. 80(5): p. 241-68.
51. Chen, H. and D.C. Chan, Critical dependence of neurons on mitochondrial dynamics. Curr Opin Cell Biol, 2006. 18(4): p. 453-9.
52. Yi, M., D. Weaver, and G. Hajnoczky, Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J Cell Biol, 2004. 167(4): p. 661-72.
53. Saotome, M., et al., Bidirectional Ca2+-dependent control of mitochondrial dynamics by the Miro GTPase. Proc Natl Acad Sci U S A, 2008. 105(52): p. 20728-33.
54. Wang, X. and T.L. Schwarz, The mechanism of Ca2+ -dependent regulation of kinesin-mediated mitochondrial motility. Cell, 2009. 136(1): p. 163-74.
55. Jou, M.J., Time-lapse images of mitochondrial movement and mitochondrial permeability transition using laser scanning confocal microscopy. Mol. Biol. Cell., 1999. 10: p. 446a.
56. Jou, M.J., et al., Critical role of mitochondrial reactive oxygen species formation in visible laser irradiation-induced apoptosis in rat brain astrocytes (RBA-1). J Biomed Sci, 2002. 9(6 Pt 1): p. 507-16.
57. Jou, M.J., et al., Mitochondrial reactive oxygen species generation and calcium increase induced by visible light in astrocytes. Ann N Y Acad Sci, 2004. 1011: p. 45-56.
58. Peng Tsung-I, C.C.-J., Jou Shuo-Bin, Yang Chuen-Mao, Jou Mei-Jie, Photosensitizer Targeting: Mitochondrion-Targeted Photosensitizer Enhances Mitochondrial Reactive Oxygen Species and Mitochondrial Calcium-Mediated Apoptosis Optical and Quantum Electronics, 2005. 37(8): p. 1377-1384.
59. Chen, H. and D.C. Chan, Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum Mol Genet, 2009. 18(R2): p. R169-76.
60. Liesa, M., M. Palacin, and A. Zorzano, Mitochondrial dynamics in mammalian health and disease. Physiol Rev, 2009. 89(3): p. 799-845.
61. Halestrap, A.P., et al., Elucidating the molecular mechanism of the permeability transition pore and its role in reperfusion injury of the heart. Biochim Biophys Acta, 1998. 1366(1-2): p. 79-94.
62. Doran, E. and A.P. Halestrap, Cytochrome c release from isolated rat liver mitochondria can occur independently of outer-membrane rupture: possible role of contact sites. Biochem J, 2000. 348 Pt 2: p. 343-50.
63. Halestrap, A.P., What is the mitochondrial permeability transition pore? J Mol Cell Cardiol, 2009. 46(6): p. 821-31.
64. Petronilli, V., et al., Regulation of the permeability transition pore, a voltage-dependent mitochondrial channel inhibited by cyclosporin A. Biochim Biophys Acta, 1994. 1187(2): p. 255-9.
65. Crompton, M., The mitochondrial permeability transition pore and its role in cell death. Biochem J, 1999. 341 ( Pt 2): p. 233-49.
66. Green, D.R. and G. Kroemer, The pathophysiology of mitochondrial cell death. Science, 2004. 305(5684): p. 626-9.
67. Martinou, J.C. and D.R. Green, Breaking the mitochondrial barrier. Nature Reviews Molecular Cell Biology, 2001. 2(1): p. 63-67.
68. Javadov, S., M. Karmazyn, and N. Escobales, Mitochondrial permeability transition pore opening as a promising therapeutic target in cardiac diseases. J Pharmacol Exp Ther, 2009. 330(3): p. 670-8.
69. Galluzzi, L., K. Blomgren, and G. Kroemer, Mitochondrial membrane permeabilization in neuronal injury. Nat Rev Neurosci, 2009. 10(7): p. 481-94.
70. Petronilli, V., et al., Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys J, 1999. 76(2): p. 725-34.
71. Hausenloy, D., et al., Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection 1. Circulation, 2004. 109(14): p. 1714-1717.
72. Murphy, M.P. and R.A. Smith, Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol, 2007. 47: p. 629-56.
73. Murphy, E. and C. Steenbergen, Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev, 2008. 88(2): p. 581-609.
74. Ichas, F., L.S. Jouaville, and J.P. Mazat, Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell, 1997. 89(7): p. 1145-53.
75. Zorov, D.B., et al., Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med, 2000. 192(7): p. 1001-14.
76. Denton, R.M. and J.G. McCormack, Ca2+ as a second messenger within mitochondria of the heart and other tissues. Annu Rev Physiol, 1990. 52: p. 451-66.
77. Denton, R.M., Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta, 2009. 1787(11): p. 1309-16.
78. Griffiths, E.J. and G.A. Rutter, Mitochondrial calcium as a key regulator of mitochondrial ATP production in mammalian cells. Biochim Biophys Acta, 2009. 1787(11): p. 1324-33.
79. Bernardi, P. and V. Petronilli, The permeability transition pore as a mitochondrial calcium release channel: a critical appraisal. J Bioenerg Biomembr, 1996. 28(2): p. 131-8.
80. Gunter, T.E., et al., Mitochondrial calcium transport: physiological and pathological relevance. Am J Physiol, 1994. 267(2 Pt 1): p. C313-39.
81. Kroemer, G., L. Galluzzi, and C. Brenner, Mitochondrial membrane permeabilization in cell death. Physiological Reviews, 2007. 87(1): p. 99-163.
82. Haass, C. and D.J. Selkoe, Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol, 2007. 8(2): p. 101-12.
83. Rosales-Corral, S.A., et al., Alzheimer's disease: pathological mechanisms and the beneficial role of melatonin. J Pineal Res, 2012. 52(2): p. 167-202.
84. Reddy, P.H. and S. McWeeney, Mapping cellular transcriptosomes in autopsied Alzheimer's disease subjects and relevant animal models. Neurobiol Aging, 2006. 27(8): p. 1060-77.
85. Saunders, A.M., et al., Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology, 1993. 43(8): p. 1467-72.
86. Rogaeva, E., et al., The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat Genet, 2007. 39(2): p. 168-77.
87. Moreira, P.I., M.S. Santos, and C.R. Oliveira, Alzheimer's disease: a lesson from mitochondrial dysfunction. Antioxid Redox Signal, 2007. 9(10): p. 1621-30.
88. Mancuso, M., et al., Mitochondrial cascade hypothesis of Alzheimer's disease: myth or reality? Antioxid Redox Signal, 2007. 9(10): p. 1631-46.
89. Reddy, P.H., Mitochondrial dysfunction in aging and Alzheimer's disease: strategies to protect neurons. Antioxid Redox Signal, 2007. 9(10): p. 1647-58.
90. Leuner, K., et al., Mitochondrial dysfunction: the first domino in brain aging and Alzheimer's disease? Antioxid Redox Signal, 2007. 9(10): p. 1659-75.
91. Pagani, L. and A. Eckert, Amyloid-Beta interaction with mitochondria. Int J Alzheimers Dis, 2011. 2011: p. 925050.
92. Tillement, L., L. Lecanu, and V. Papadopoulos, Alzheimer's disease: effects of beta-amyloid on mitochondria. Mitochondrion, 2011. 11(1): p. 13-21.
93. Rhein, V., et al., Amyloid-beta and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer's disease mice. Proc Natl Acad Sci U S A, 2009. 106(47): p. 20057-62.
94. Eckert, A., et al., Oligomeric and fibrillar species of beta-amyloid (A beta 42) both impair mitochondrial function in P301L tau transgenic mice. J Mol Med (Berl), 2008. 86(11): p. 1255-67.
95. Hauptmann, S., et al., Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol Aging, 2009. 30(10): p. 1574-86.
96. Lustbader, J.W., et al., ABAD directly links Abeta to mitochondrial toxicity in Alzheimer's disease. Science, 2004. 304(5669): p. 448-52.
97. Glabe, C.G. and R. Kayed, Common structure and toxic function of amyloid oligomers implies a common mechanism of pathogenesis. Neurology, 2006. 66(2 Suppl 1): p. S74-8.
98. Reddy, P.H. and M.F. Beal, Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer's disease. Trends Mol Med, 2008. 14(2): p. 45-53.
99. Alikhani, N., M. Ankarcrona, and E. Glaser, Mitochondria and Alzheimer's disease: amyloid-beta peptide uptake and degradation by the presequence protease, hPreP. J Bioenerg Biomembr, 2009. 41(5): p. 447-51.
100. Hansson Petersen, C.A., et al., The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Natl Acad Sci U S A, 2008. 105(35): p. 13145-50.
101. Devi, L., et al., Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem, 2008. 283(14): p. 9089-100.
102. Hirai, K., et al., Mitochondrial abnormalities in Alzheimer's disease. J Neurosci, 2001. 21(9): p. 3017-23.
103. Tillement, L., et al., The spirostenol (22R, 25R)-20alpha-spirost-5-en-3beta-yl hexanoate blocks mitochondrial uptake of Abeta in neuronal cells and prevents Abeta-induced impairment of mitochondrial function. Steroids, 2006. 71(8): p. 725-35.
104. Canevari, L., J.B. Clark, and T.E. Bates, beta-Amyloid fragment 25-35 selectively decreases complex IV activity in isolated mitochondria. FEBS Lett, 1999. 457(1): p. 131-4.
105. Takuma, K., et al., ABAD enhances Abeta-induced cell stress via mitochondrial dysfunction. Faseb J, 2005. 19(6): p. 597-8.
106. Meratan, A.A., A. Ghasemi, and M. Nemat-Gorgani, Membrane integrity and amyloid cytotoxicity: a model study involving mitochondria and lysozyme fibrillation products. J Mol Biol, 2011. 409(5): p. 826-38.
107. Dragicevic, N., et al., Melatonin treatment restores mitochondrial function in Alzheimer's mice: a mitochondrial protective role of melatonin membrane receptor signaling. J Pineal Res, 2011. 51(1): p. 75-86.
108. Beal, M.F., Energetics in the pathogenesis of neurodegenerative diseases. Trends Neurosci, 2000. 23(7): p. 298-304.
109. Lin, M.T. and M.F. Beal, Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006. 443(7113): p. 787-95.
110. Schon, E.A. and S. Przedborski, Mitochondria: the next (neurode)generation. Neuron, 2011. 70(6): p. 1033-53.
111. Sanz-Blasco, S., et al., Mitochondrial Ca2+ overload underlies Abeta oligomers neurotoxicity providing an unexpected mechanism of neuroprotection by NSAIDs. PLoS One, 2008. 3(7): p. e2718.
112. Alberdi, E., et al., Amyloid beta oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium, 2010. 47(3): p. 264-72.
113. Paula-Lima, A.C., et al., Amyloid beta-peptide oligomers stimulate RyR-mediated Ca2+ release inducing mitochondrial fragmentation in hippocampal neurons and prevent RyR-mediated dendritic spine remodeling produced by BDNF. Antioxid Redox Signal, 2011. 14(7): p. 1209-23.
114. Toescu, E.C. and A. Verkhratsky, The importance of being subtle: small changes in calcium homeostasis control cognitive decline in normal aging. Aging Cell, 2007. 6(3): p. 267-73.
115. Mattson, M.P., M. Gleichmann, and A. Cheng, Mitochondria in neuroplasticity and neurological disorders. Neuron, 2008. 60(5): p. 748-66.
116. Camandola, S. and M.P. Mattson, Aberrant subcellular neuronal calcium regulation in aging and Alzheimer's disease. Biochim Biophys Acta, 2011. 1813(5): p. 965-73.
117. Gleichmann, M. and M.P. Mattson, Neuronal calcium homeostasis and dysregulation. Antioxid Redox Signal, 2011. 14(7): p. 1261-73.
118. Demuro, A., I. Parker, and G.E. Stutzmann, Calcium signaling and amyloid toxicity in Alzheimer disease. J Biol Chem, 2010. 285(17): p. 12463-8.
119. Sheehan, J.P., et al., Calcium homeostasis and reactive oxygen species production in cells transformed by mitochondria from individuals with sporadic Alzheimer's disease. J Neurosci, 1997. 17(12): p. 4612-22.
120. Park, J., J. Lee, and C. Choi, Mitochondrial network determines intracellular ROS dynamics and sensitivity to oxidative stress through switching inter-mitochondrial messengers. PLoS One, 2011. 6(8): p. e23211.
121. He, Y., et al., Prolonged exposure of cortical neurons to oligomeric amyloid-beta impairs NMDA receptor function via NADPH oxidase-mediated ROS production: protective effect of green tea (-)-epigallocatechin-3-gallate. ASN Neuro, 2011. 3(1): p. e00050.
122. De Felice, F.G., et al., Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem, 2007. 282(15): p. 11590-601.
123. Moreira, P.I., et al., Amyloid beta-peptide promotes permeability transition pore in brain mitochondria. Biosci Rep, 2001. 21(6): p. 789-800.
124. Moreira, P.I., et al., Effect of amyloid beta-peptide on permeability transition pore: a comparative study. J Neurosci Res, 2002. 69(2): p. 257-67.
125. Clementi, M.E., et al., Abeta(31-35) and Abeta(25-35) fragments of amyloid beta-protein induce cellular death through apoptotic signals: Role of the redox state of methionine-35. FEBS Lett, 2005. 579(13): p. 2913-8.
126. Kim, H.S., et al., Amyloid beta peptide induces cytochrome C release from isolated mitochondria. Neuroreport, 2002. 13(15): p. 1989-93.
127. Reddy, P.H., Amyloid beta, mitochondrial structural and functional dynamics in Alzheimer's disease. Exp Neurol, 2009. 218(2): p. 286-92.
128. Du, H., et al., Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease. Nat Med, 2008. 14(10): p. 1097-105.
129. Du, H. and S.S. Yan, Mitochondrial permeability transition pore in Alzheimer's disease: cyclophilin D and amyloid beta. Biochim Biophys Acta, 2010. 1802(1): p. 198-204.
130. Lin, M.T., et al., High aggregate burden of somatic mtDNA point mutations in aging and Alzheimer's disease brain. Hum Mol Genet, 2002. 11(2): p. 133-45.
131. Onyango, I., et al., Mitochondrial genomic contribution to mitochondrial dysfunction in Alzheimer's disease. J Alzheimers Dis, 2006. 9(2): p. 183-93.
132. Reddy, P.H. and M.F. Beal, Are mitochondria critical in the pathogenesis of Alzheimer's disease? Brain Res Brain Res Rev, 2005. 49(3): p. 618-32.
133. Coskun, P.E., M.F. Beal, and D.C. Wallace, Alzheimer's brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc Natl Acad Sci U S A, 2004. 101(29): p. 10726-31.
134. Swerdlow, R.H., Mitochondria in cybrids containing mtDNA from persons with mitochondriopathies. J Neurosci Res, 2007. 85(15): p. 3416-28.
135. Park, C.B. and N.G. Larsson, Mitochondrial DNA mutations in disease and aging. J Cell Biol, 2011. 193(5): p. 809-18.
136. Mao, P. and P.H. Reddy, Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer's disease: implications for early intervention and therapeutics. Biochim Biophys Acta, 2011. 1812(11): p. 1359-70.
137. Corral-Debrinski, M., et al., Marked changes in mitochondrial DNA deletion levels in Alzheimer brains. Genomics, 1994. 23(2): p. 471-6.
138. Shoffner, J.M., et al., Mitochondrial DNA variants observed in Alzheimer disease and Parkinson disease patients. Genomics, 1993. 17(1): p. 171-84.
139. Cardoso, S.M., et al., Mitochondria dysfunction of Alzheimer's disease cybrids enhances Abeta toxicity. J Neurochem, 2004. 89(6): p. 1417-26.
140. Khan, S.M., et al., Alzheimer's disease cybrids replicate beta-amyloid abnormalities through cell death pathways. Ann Neurol, 2000. 48(2): p. 148-55.
141. Onyango, I.G., J.P. Bennett, Jr., and J.B. Tuttle, Endogenous oxidative stress in sporadic Alzheimer's disease neuronal cybrids reduces viability by increasing apoptosis through pro-death signaling pathways and is mimicked by oxidant exposure of control cybrids. Neurobiol Dis, 2005. 19(1-2): p. 312-22.
142. Swerdlow, R.H., et al., Cybrids in Alzheimer's disease: a cellular model of the disease? Neurology, 1997. 49(4): p. 918-25.
143. Peng, T.I., et al., mtDNA T8993G mutation-induced mitochondrial complex V inhibition augments cardiolipin-dependent alterations in mitochondrial dynamics during oxidative, Ca(2+), and lipid insults in NARP cybrids: a potential therapeutic target for melatonin. J Pineal Res, 2012. 52(1): p. 93-106.
144. Petrosillo, G., et al., Protective effect of melatonin against mitochondrial dysfunction associated with cardiac ischemia- reperfusion: role of cardiolipin. Faseb J, 2006. 20(2): p. 269-76.
145. Schlame, M., D. Rua, and M.L. Greenberg, The biosynthesis and functional role of cardiolipin. Prog Lipid Res, 2000. 39(3): p. 257-88.
146. Chicco, A.J. and G.C. Sparagna, Role of cardiolipin alterations in mitochondrial dysfunction and disease. Am J Physiol Cell Physiol, 2007. 292(1): p. C33-44.
147. Jou, M.J., et al., Visualization of the antioxidative effects of melatonin at the mitochondrial level during oxidative stress-induced apoptosis of rat brain astrocytes. J Pineal Res, 2004. 37(1): p. 55-70.
148. Paradies, G., et al., Melatonin, cardiolipin and mitochondrial bioenergetics in health and disease. J Pineal Res, 2010. 48(4): p. 297-310.
149. Milczarek, R., et al., Melatonin enhances antioxidant action of alpha-tocopherol and ascorbate against NADPH- and iron-dependent lipid peroxidation in human placental mitochondria. J Pineal Res, 2010. 49(2): p. 149-55.
150. Jou, M.J., et al., Visualization of melatonin's multiple mitochondrial levels of protection against mitochondrial Ca-mediated permeability transition and beyond in rat brain astrocytes. J Pineal Res, 2010.
151. Jou, M.J., et al., Visualization of melatonin's multiple mitochondrial levels of protection against mitochondrial Ca2+-mediated permeability transition and beyond in rat brain astrocytes 1. Journal of Pineal Research. 48(1): p. 20-38.
152. Galano, A., D.X. Tan, and R.J. Reiter, Melatonin as a natural ally against oxidative stress: a physicochemical examination. J Pineal Res, 2011. 51(1): p. 1-16.
153. Mosmann, T., Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 1983. 65(1-2): p. 55-63.
154. Villani, G. and G. Attardi, In vivo measurements of respiration control by cytochrome c oxidase and in situ analysis of oxidative phosphorylation. Methods Cell Biol, 2001. 65: p. 119-31.
155. Jou, M.J., et al., Visualization of melatonin's multiple mitochondrial levels of protection against mitochondrial Ca-mediated permeability transition and beyond in rat brain astrocytes. J Pineal Res, 2009.
156. Clayton, D.A., Replication and transcription of vertebrate mitochondrial DNA. Annu Rev Cell Biol, 1991. 7: p. 453-78.
157. Hayashi, J., et al., Introduction of disease-related mitochondrial DNA deletions into HeLa cells lacking mitochondrial DNA results in mitochondrial dysfunction. Proc Natl Acad Sci U S A, 1991. 88(23): p. 10614-8.
158. Jou, M.J., et al., Enhanced generation of mitochondrial reactive oxygen species in cybrids containing 4977-bp mitochondrial DNA deletion. Ann N Y Acad Sci, 2005. 1042: p. 221-8.
159. Paradies, G., et al., Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease. Cell Calcium, 2009. 45(6): p. 643-50.
160. Maftah, A., et al., Human epidermal cells progressively lose their cardiolipins during ageing without change in mitochondrial transmembrane potential. Mech Ageing Dev, 1994. 77(2): p. 83-96.
161. Paradies, G. and F.M. Ruggiero, Effect of aging on the activity of the phosphate carrier and on the lipid composition in rat liver mitochondria. Arch Biochem Biophys, 1991. 284(2): p. 332-7.
162. Paradies, G., et al., The effect of aging and acetyl-L-carnitine on the activity of the phosphate carrier and on the phospholipid composition in rat heart mitochondria. Biochim Biophys Acta, 1992. 1103(2): p. 324-6.
163. Lewin, M.B. and P.S. Timiras, Lipid changes with aging in cardiac mitochondrial membranes. Mech Ageing Dev, 1984. 24(3): p. 343-51.
164. Hatefi, Y., et al., Studies on the electron transfer system. XLII. Reconstitution of the electron transfer system. J Biol Chem, 1962. 237: p. 2661-9.
165. D'Aurelio, M., et al., Respiratory chain supercomplexes set the threshold for respiration defects in human mtDNA mutant cybrids. Hum Mol Genet, 2006. 15(13): p. 2157-69.
166. Chinopoulos, C., et al., Modulation of F(0) F(1) -ATP synthase activity by cyclophilin D regulates matrix adenine nucleotide levels. Febs J, 2011. 278(7): p. 1112-25.
167. Meeusen, S., J.M. McCaffery, and J. Nunnari, Mitochondrial fusion intermediates revealed in vitro. Science, 2004. 305(5691): p. 1747-52.
168. Paumard, P., et al., The ATP synthase is involved in generating mitochondrial cristae morphology. Embo J, 2002. 21(3): p. 221-30.
169. Geromel, V., et al., Superoxide-induced massive apoptosis in cultured skin fibroblasts harboring the neurogenic ataxia retinitis pigmentosa (NARP) mutation in the ATPase-6 gene of the mitochondrial DNA. Hum Mol Genet, 2001. 10(11): p. 1221-8.
170. Ishihara, N., et al., Regulation of mitochondrial morphology by membrane potential, and DRP1-dependent division and FZO1-dependent fusion reaction in mammalian cells. Biochem Biophys Res Commun, 2003. 301(4): p. 891-8.
171. Mattenberger, Y., D.I. James, and J.C. Martinou, Fusion of mitochondria in mammalian cells is dependent on the mitochondrial inner membrane potential and independent of microtubules or actin. FEBS Lett, 2003. 538(1-3): p. 53-9.
172. Rappaport, L., P. Oliviero, and J.L. Samuel, Cytoskeleton and mitochondrial morphology and function. Mol Cell Biochem, 1998. 184(1-2): p. 101-5.
173. Malena, A., et al., Inhibition of mitochondrial fission favours mutant over wild-type mitochondrial DNA. Hum Mol Genet, 2009. 18(18): p. 3407-16.
174. Zoratti, M. and I. Szabo, The mitochondrial permeability transition. Biochim Biophys Acta, 1995. 1241(2): p. 139-76.
175. Zhu, S., et al., Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice. Nature, 2002. 417(6884): p. 74-8.
176. Ghribi, O., et al., Cyclosporin A inhibits Al-induced cytochrome c release from mitochondria in aged rabbits. Journal of Alzheimer's Disease, 2001. 3(4): p. 387-391.
177. Andrabi, S.A., et al., Direct inhibition of the mitochondrial permeability transition pore: a possible mechanism responsible for anti-apoptotic effects of melatonin. Faseb J, 2004. 18(7): p. 869-71.
178. Youle, R.J. and M. Karbowski, Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol, 2005. 6(8): p. 657-63.
179. Peng, T.I., et al., Visualization of NMDA Receptor-Induced Mitochondrial Calcium Accumulation in Striatal Neurons* 1. Experimental neurology, 1998. 149(1): p. 1-12.
180. Peng, T.I. and J.T. Greenamyre, Privileged Access to Mitochondria of Calcium Influx throughN-Methyl-d-Aspartate Receptors. Molecular pharmacology, 1998. 53(6): p. 974.
181. Jou, M.J., T.I. Peng, and S.S. Sheu, Histamine induces oscillations of mitochondrial free Ca2+ concentration in single cultured rat brain astrocytes. The Journal of Physiology, 1996. 497(Pt 2): p. 299.
182. Bezprozvanny, I., Calcium signaling and neurodegenerative diseases. Trends Mol Med, 2009. 15(3): p. 89-100.
183. Bojarski, L., J. Herms, and J. Kuznicki, Calcium dysregulation in Alzheimer's disease. Neurochem Int, 2008. 52(4-5): p. 621-33.
184. LaFerla, F.M., Calcium dyshomeostasis and intracellular signalling in Alzheimer's disease. Nat Rev Neurosci, 2002. 3(11): p. 862-72.
185. Mattson, M.P. and S.L. Chan, Neuronal and glial calcium signaling in Alzheimer's disease. Cell Calcium, 2003. 34(4-5): p. 385-97.
186. Yu, J.T., R.C. Chang, and L. Tan, Calcium dysregulation in Alzheimer's disease: from mechanisms to therapeutic opportunities. Prog Neurobiol, 2009. 89(3): p. 240-55.
187. Hung, C.H., Y.S. Ho, and R.C. Chang, Modulation of mitochondrial calcium as a pharmacological target for Alzheimer's disease. Ageing Res Rev, 2010. 9(4): p. 447-56.
188. Mattson, M.P., et al., beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci, 1992. 12(2): p. 376-89.
189. Zhu, Y.J., H. Lin, and R. Lal, Fresh and nonfibrillar amyloid beta protein(1-40) induces rapid cellular degeneration in aged human fibroblasts: evidence for AbetaP-channel-mediated cellular toxicity. Faseb J, 2000. 14(9): p. 1244-54.
190. Gunter, T.E., et al., Calcium and mitochondria. FEBS Lett, 2004. 567(1): p. 96-102.
191. Ferreira, I.L., et al., Amyloid beta peptide 1-42 disturbs intracellular calcium homeostasis through activation of GluN2B-containing N-methyl-d-aspartate receptors in cortical cultures. Cell Calcium, 2012. 51(2): p. 95-106.
192. Schonfeld, P. and G. Reiser, Ca2+ storage capacity of rat brain mitochondria declines during the postnatal development without change in ROS production capacity. Antioxid Redox Signal, 2007. 9(2): p. 191-9.
193. Griffiths, E.J., Mitochondria and heart disease. Adv Exp Med Biol, 2012. 942: p. 249-67.
194. Chan, D.C., Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol, 2006. 22: p. 79-99.
195. Acin-Perez, R., et al., Respiratory active mitochondrial supercomplexes. Mol Cell, 2008. 32(4): p. 529-39.
196. Sanmartin, C.D., et al., The Antioxidant N-Acetylcysteine Prevents the Mitochondrial Fragmentation Induced by Soluble Amyloid-beta Peptide Oligomers. Neurodegener Dis, 2012.
197. Zamzami, N., et al., Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med, 1995. 182(2): p. 367-77.
198. Zorov, D.B., M. Juhaszova, and S.J. Sollott, Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta, 2006. 1757(5-6): p. 509-17.