簡易檢索 / 詳目顯示

研究生: 梁俊熙
LEUNG, Chun-Hei
論文名稱: 量子漲落的新穎現象
Novel Effects of Vacuum Fluctuation
指導教授: 朱創新
Chu, Chong-Sun
口試委員: 張敬民
Cheung, Kingman
溫文鈺
Wen, Wen-Yu
林豐利
Lin, Feng-Li
賀培銘
Ho, Pei-Ming
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 70
中文關鍵詞: 量子漲落
外文關鍵詞: Vacuum Fluctuation
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在探討量子電動力學的真空在電磁場作用下的新現象。本文共有兩部份︰第一部份探討在邊界效應和電磁場共同引起的電流,而第二部份則探討在電磁場導致的自旋流。

    在第一部份,我們將重新研究關於「施加電磁場,量子效應會在邊界附近產生電流」的問題。我們把結果推廣至非共形場論,以包含電子質量帶來的修正。我們的結果也可以推廣到兩個平行邊界所引起的電流。

    在第二部份,我們將證明電磁場在真空可引起自旋流。此外,我們亦提出了一個實驗,透過測量向列相液晶的扭轉角度,來觀測自旋流伴隨的自旋力矩。


    In this thesis, we are going to study the novel phenomena of the QED vacuum under a background electromagnetic field. It consists of two parts: the first part focus on the electric current induced by the boundary effect together with the background electromagnetic field; while the second part focus on the spin current induced by the background electromagnetic field.

    In the first part, we re-examined the problem about the quantum generation of electric current near the vicinity of the boundary when an electromagnetic field is applied \cite{CsChu}. We used another method to extend the result to non-conformal field theory, by including the correction of finite electron mass. Moreover, we used this method to study the more general problem of the quantum generation of electric current between two parallel boundaries.

    In the second part, we showed that the vacuum under a background electromagnetic field would induce a spin current. We also proposed an experiment to observe the spin torque exerted by the spin current by measuring the twisted angle of the director axis of a nematic liquid crystal.

    Contents Abstract (Chinese) I Abstract II Contents III 0 Notations 1 I Vacuum Polarisation Electric Current 3 1 Introduction 4 2 Single Boundary 6 2.1 Half-Space Propagator 7 2.1.1 Satisfying the B.C. When A = 0 9 2.1.2 Satisfying the B.C. When A ̸ = 0 10 2.2 Induced Current 13 2.3 Other Correction From Mass (When the Magnetic Field Is Normal to the Boundary) 16 2.4 Summary and Discussion 18 3 Parallel Boundaries 19 3.1 Propagator 20 3.1.1 Boundary Condition at z = 0 21 3.1.2 Boundary Condition at z = L 23 3.1.3 Fixing the Boundary Condition of Gauge Field 24 3.2 Induced Current 25 3.2.1 Vanishment of JMO 27 3.2.2 Contribution from JME 28 3.2.3 Contribution from JP 30 3.3 Current near Boundary 33 3.3.1 Massless Case 33 3.3.2 Massive Case 34 3.4 Other Correction From Mass (When the Magnetic Field Is Normal to the Boundaries) 35 3.5 Summary and Discussion 37 II Spin Current 39 4 Introduction 40 5 Definition of Spin Current 41 5.1 Conservation Law 44 6 Vacuum Expectation 45 6.1 Renormalisation 48 7 Physical Picture 50 8 Proposed Experiment 52 9 Summary and Discussion 57 III Appendix 58 A Vanishment of the Zeroth-Order Term in Eq. (2.14) 59 B Vanishment of the Zeroth-Order Term in Eq. (3.14) 60 C Some Useful Integrals 61 D Equivalence between the Bargmann-Wigner Spin Operator and the Pauli–Lubanski Operator 64 E Conservation Law of the Spin Current 66 Bibliography 68

    Bibliography
    [1] C.-S. Chu and R.-X. Miao, “Weyl anomaly induced current in boundary quantum field theories,” Phys. Rev. Lett., vol. 121, p. 251602, Dec 2018.
    [2] K. Fujikawa and H. Suzuki, Path integrals and Quantum Anomalies. Clarendon, 2004.
    [3] V. Alonso, S. D. Vincenzo, and L. Mondino, “On the boundary conditions for the dirac equation,” European Journal of Physics, vol. 18, pp. 315–320, sep 1997.
    [4] G. Esposito and K. Kirsten, “Chiral bag boundary conditions on the ball,”Phys. Rev. D, vol. 66, p. 085014, Oct 2002.
    [5] F. Gross, Relativistic Quantum Mechanics and field theory. Wiley-VCH Verlag, 2006.
    [6] M. E. Peskin and D. V. Schroeder, An introduction to quantum field theory. Perseus Books, 1995.
    [7] B. Johnson, “Generalized lerch zeta function,” Pacific Journal of Mathematics, vol. 53, no. 1, p. 189–193, 1974.
    [8] H. Bateman and A. Erd ́elyi, Higher transcendental functions. McGraw-Hill Book Co, 1953.
    [9] P.-J. Hu, Q.-L. Hu, and R.-X. Miao, “Note on anomalous currents for a free theory,” Phys. Rev. D, vol. 101, p. 125010, Jun 2020.
    [10] E. I. Rashba, “Spin currents in thermodynamic equilibrium: The challenge of discerning transport currents,” Phys. Rev. B, vol. 68, p. 241315, Dec 2003.
    [11] A. Vernes, B. L. Gy ̈orffy, and P. Weinberger, “Spin currents, spin-transfer torque, and spin-hall effects in relativistic quantum mechanics,” Phys. Rev. B, vol. 76, p. 012408, Jul 2007.
    [12] H. Bauke, S. Ahrens, C. H. Keitel, and R. Grobe, “What is the relativistic spin operator?,” New Journal of Physics, vol. 16, p. 043012, apr 2014.
    [13] V. Bargmann and E. P. Wigner, “Group theoretical discussion of relativistic wave equations,” Proceedings of the National Academy of Sciences, vol. 34, no. 5, pp. 211–223, 1948.
    [14] D. M. Fradkin and R. H. Good, “Electron polarization operators,” Rev. Mod. Phys., vol. 33, pp. 343–352, Apr 1961.
    [15] X.-G. Huang, M. Matsuo, and H. Taya, “Spontaneous generation of spin current from the vacuum by strong electric fields,” Progress of Theoretical and Experimental Physics, vol. 2019, 11 2019. 113B02.
    [16] J. C. Collins, Renormalization an introduction to renormalization,the renormalization group and the operator-product expansion. Cambridge University Press, 1984.
    [17] F. Schwabl, Advanced Quantum Mechanics. Springer, 2008.
    [18] J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics. McGraw-Hill, 1964.
    [19] J. Smit, “The spontaneous hall effect in ferromagnetics i,” Physica, vol. 21, no. 6, pp. 877–887, 1955.
    [20] J. Smit, “The spontaneous hall effect in ferromagnetics ii,” Physica, vol. 24, no. 1, pp. 39–51, 1958.
    [21] L. Berger, “Side-jump mechanism for the hall effect of ferromagnets,” Phys. Rev. B, vol. 2, pp. 4559–4566, Dec 1970.
    [22] L. Berger, “Application of the side-jump model to the hall effect and nernst effect in ferromagnets,” Phys. Rev. B, vol. 5, pp. 1862–1870, Mar 1972.
    [23] L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media. Butterworth-Heinemann, 1984.
    [24] D. A. T. Somers and J. N. Munday, “Rotation of a liquid crystal by the casimir torque,” Phys. Rev. A, vol. 91, p. 032520, Mar 2015.
    [25] D. A. T. Somers, J. L. Garrett, K. J. Palm, and J. N. Munday, “Measurement of the casimir torque,” Nature, vol. 564, pp. 386–389, Dec 2018.
    [26] I.-C. Khoo, Liquid crystals. J. Wiley, 2007.
    [27] A. Stoddart and R. Viollier, “Evaluating loop diagrams in a cavity (ii). the vacuum polarization in scalar qed,” Nuclear Physics A, vol. 541, no. 4, pp. 623–640, 1992.
    [28] W. Greiner and J. Reinhardt, Quantum electrodynamics. - 4th ed. Springer, 2009.

    QR CODE