簡易檢索 / 詳目顯示

研究生: 施威麟
David Shih
論文名稱: 運用倒傳遞類神經網路預測錫銀凸塊電鍍參數
Predicting the Sn-Ag solder plating parameters by back propagation neural network
指導教授: 蘇朝墩
Su, Chao-Ton
口試委員: 蕭宇翔
陳麗妃
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系碩士在職專班
Industrial Engineering and Engineering Management
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 51
中文關鍵詞: 倒傳遞類神經方法錫銀凸塊錫銀電鍍覆晶封裝
外文關鍵詞: Back-propagation neural network, Sn-Ag solder bump, Solder plating, Flip chip
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 覆晶封裝(Flip chip)的封裝方式乃是現今廣泛應用於消費型電子產品的封裝技術,其封裝之體積較小,能節省最終產品所需之空間。在製程中所需的關鍵技術是所謂的晶圓凸塊(Bumping process),即是在晶圓代工廠產出後的整片晶圓上直接在導通開孔(IO pad)上電鍍上做為金屬傳導的金屬凸塊,過去大多為高鉛或是錫鉛的合金金屬,隨著環保的要求與意識,現在大多將產品轉為錫銀合金。
    由於消費性電子產品的世代更新速度快速,開發過程最重視的即是如何增進產品量產以及上市的效率。然而,在晶圓凸塊的新產品導入時,需要耗費大量時間與控片測試(Dummy test)來找尋最佳電鍍參數(Parameter fine tune),過去實務上大多憑藉工程師的經驗法則來做為新產品開發時參數選訂的依據,需浪費大量控片測試時間與成本。本研究利用倒傳遞類神經網路(Back propagation neural network, BPN)來建立預測模式,經以過去實際量產之數據進行驗證,本研究所建立之預測模型可有效降低量產前所需之測試時間與成本。


    Flip chip process is a mature assembly techniques used in the packaging industry for consumer products today. The IC product size of this assembly technology is quite small that can reduce the device volume. The key technique in the flip chip process is bumping process which is generated the solder bump on IO pad of the wafer via electrochemical plating. In the past, the composition of the metal was high-lead or lead-solder eutectic metallization. Today, most firms follow with environmental ROHS regulations; majority customers required their product to adopt silver soldering material in recent years.
    Electrical device’s life cycle is much shorter nowadays, product development timeline become a challenge task for quality yield and product launch timing. Firms spent a lot of time and dummy test for parameter fine tune during the bumping new-product-introduce stage. In the past, engineer searched for historical data to set the parameter but it needs a long time and with high cost. In this study, we provide an approach which demonstrate a back-propagation network to construct a prediction model by using the historical data and the performance by data and actual in-line enhancement to verify the benefit of time and cost saving by this method.

    圖目錄……………………………………………………………………………………VI 表目錄…………………………………………………………………………………VII 第一章 緒論………………………………………………………………………………1 1.1 研究動機………………………………………………………………………1 1.2 研究目的………………………………………………………………………2 1.3 研究方法與流程………………………………………………………………3 1.4 研究範圍………………………………………………………………………5 第二章 錫銀凸塊製程與原理……………………………………………………………6 2.1 覆晶封裝市場概述……………………………………………………………6 2.2 覆晶封裝………………………………………………………………………7 2.3 錫銀凸塊製程………………………………………………………………10 2.4 錫銀電鍍製程………………………………………………………………13 2.5 現行錫銀電鍍程式找尋方法…………………………………………………18 第三章 文獻探討………………………………………………………………………20 3.1 類神經網路…………………………………………………………………20 3.1.1 類神經網路之基本架構……………………………………………20 3.1.2 類神經網路之類型…………………………………………………22 3.1.3 倒傳遞類神經網路…………………………………………………24 3.1.4 類神經網路之比較與應用…………………………………………28 第四章 研究方法………………………………………………………………………30 第五章 個案探討………………………………………………………………………32 5.1資料整理與參數選定……………………………………………………32 5.1.1 歷史資料整理………………………………………………………32 5.1.2 根據工程經驗選定設計輸入資訊與擬預估之電鍍參數…………33 5.2 運用歷史資訊得出最佳預測模式……………………………………………35 5.2.1 將資料分群為訓練組及測試組……………………………………35 5.2.2 建立類神經網路預測模式…………………………………………36 5.2.3 測試模型與確認表現………………………………………………36 5.3 實際運用於產線並驗證其效果………………………………………………42 5.3.1 預測軟體建模………………………………………………………42 5.3.2 新產品電鍍測試……………………………………………………42 5.3.3 結果比較與驗證……………………………………………………45 第六章 結論與未來研究方向…………………………………………………………48 6.1 結論……………………………………………………………………………48 6.2 未來展望……………………………………………………………………49 參考文獻…………………………………………………………………………………50

    [1] Amkor Technology Taiwan內部訓練資料
    [2] 資策會產業情報研究所 (MIC) http://mic.iii.org.tw/micnew/Default.aspx
    [3] Yole Developpement, http://www.yole.fr/
    [4] USP 3,648,131 by International Business Machines Corporation. 1969
    [5] 陳信文、陳立軒、林永森、陳志銘,.電子構裝技術與材料 P135,2004
    [6] 黃冠傑,. 電化學沉積法於超細間距微無鉛銲錫凸塊的開發. 國立交通大學碩士論文. 2011
    [7] N. M. Bigas and E. Cabruga., Characterisation of electroplated Sn/Ag solder bumps. Microelectronics. 37: 308-316; 2006
    [8] George Murray, Charles V. White, Wolfgang Weise., Introduction to Engineering Materials, 2nd edition, 14: 397; 2007
    [9] David E. Rumelhart., Geoffrey E. Hinton & Ronald J. Williams., Learning representations by back-propagating errors, Nature. 323: 533-536; 1986
    [10] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel and Demis Hassabis., Mastering the game of Go with deep neural networks and tree search.”, Nature. 529: 484-489; 2016
    [11] Widrow, B., Winter, R. G. and Baxter, R. A., Learning Phenomena in Layered Neural Networks, Proceedings of the IEEE First Annual International Conference on Neural Networks, 411-429; 1987
    [12] Judith E. Dayhoff., Neural Network Architectures : An Introduction, 2: 28, 1990
    [13] Chang, C. C. and Su, C. T., A Comparison of Statistical Regression and Neural Network Methods in Modeling Measurement Errors for Computer Vision Inspection System, Computers & Industrial Engineering, Vol. 28, No. 3, 593-603; 1995
    [14] 孫瑛霙、王明庸、藍天雄., 應用倒傳遞神經網路於負載啟斷開關接觸電阻預測之研究,管理資訊計算, 4.1: 142-149; 2015
    [15] 羅華強. 類神經網路-MATLAB的應用. 2001
    [16] Su, C. T. and Chiang, T. L., Optimal Design for a Ball Grid Array Wire Bonding Process Using a Neuro-Genetic Approach, IEEE Transaction on Electronics Packaging Manufacturing, Vol. 25, No. 1, 13-18. 2002

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE