研究生: |
蕭俊賢 Jun-Shian Hsiao |
---|---|
論文名稱: |
具有一些等質量的五體等腰梯形之中心構型問題 Isosceles Central Configurations for the 5-body Problem with Some Equal Masses |
指導教授: |
陳國璋
Kuo-Chang Chen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 19 |
中文關鍵詞: | 中心構型 |
外文關鍵詞: | central configuration |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇文章我們考慮具有某些等質量的五體中心構型,並且考慮一個關於中心構型的猜想:在平面上有n個構成凸集的質點,那將不可能把第n+1個質點放在邊界上,使得它形成一個中心構型。首先,我們證明在某些對稱的情形之下,此猜想的確是對的。最後,我們給了一個關於這個猜想的反例,說明有這樣的中心構型存在。
In 1990, R.Moekel published a famous work about central configurations, in which he proved Conley′s Perpendicular bisector theorem, and the 45° theorem that provide some information on possible shapes of central configuration.
In this paper we consider the following problem. Suppose (q₁, m₁), (q₂, m₂),..., (qi, mi) form a convex configuration, can we add a mass and position (qi+1, mi+1) on the boundary to make it a central configuration? The answer is false for i=3, as it follows easily from the Conley′s Perpendicular bisector theorem. Is the answer still negative when i >3? In this paper, we discuss the problem with i=4, and with isosceles trapezoid configuration and some equal masses. In the last section we provide a counter-example for this problem.
1.R.Moeckel,On central configurations, Math. Z. 205, no. 499-517.
2.A.Albouy,The symmetric central configurations of four equal masses. Contemp. Math 198 (1996).131-135.
3.Y.Long,S.Sun.Four-body Central Configurations with some Equal Masses. Arch. Rational Mech. Anal. 162. (2002).25-44.
4.N.Faycal.On the classification of pyramidal central configurations. Proc. Amer. Math. Soc. 124. (1996).249-258.