簡易檢索 / 詳目顯示

研究生: 蕭俊賢
Jun-Shian Hsiao
論文名稱: 具有一些等質量的五體等腰梯形之中心構型問題
Isosceles Central Configurations for the 5-body Problem with Some Equal Masses
指導教授: 陳國璋
Kuo-Chang Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 19
中文關鍵詞: 中心構型
外文關鍵詞: central configuration
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇文章我們考慮具有某些等質量的五體中心構型,並且考慮一個關於中心構型的猜想:在平面上有n個構成凸集的質點,那將不可能把第n+1個質點放在邊界上,使得它形成一個中心構型。首先,我們證明在某些對稱的情形之下,此猜想的確是對的。最後,我們給了一個關於這個猜想的反例,說明有這樣的中心構型存在。


    In 1990, R.Moekel published a famous work about central configurations, in which he proved Conley′s Perpendicular bisector theorem, and the 45° theorem that provide some information on possible shapes of central configuration.
    In this paper we consider the following problem. Suppose (q₁, m₁), (q₂, m₂),..., (qi, mi) form a convex configuration, can we add a mass and position (qi+1, mi+1) on the boundary to make it a central configuration? The answer is false for i=3, as it follows easily from the Conley′s Perpendicular bisector theorem. Is the answer still negative when i >3? In this paper, we discuss the problem with i=4, and with isosceles trapezoid configuration and some equal masses. In the last section we provide a counter-example for this problem.

    Contents 1 Introduction .........1 2 A Simple Case .........2 3 Isosceles Trapezoids with Four Equal Masses ....3 4 General Case ......11 5 A Counter-example ........13 6 References ..........19

    1.R.Moeckel,On central configurations, Math. Z. 205, no. 499-517.
    2.A.Albouy,The symmetric central configurations of four equal masses. Contemp. Math 198 (1996).131-135.
    3.Y.Long,S.Sun.Four-body Central Configurations with some Equal Masses. Arch. Rational Mech. Anal. 162. (2002).25-44.
    4.N.Faycal.On the classification of pyramidal central configurations. Proc. Amer. Math. Soc. 124. (1996).249-258.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE