簡易檢索 / 詳目顯示

研究生: 賴文浩
Lai, Wen-Hao
論文名稱: 模板形貌對電鍍銅奈米線優選方向及微結構之影響
Effect of template morphology on crystallographic orientation and microstructure of electrodeposited copper nanowires
指導教授: 廖健能
Liao, Chien-Neng
口試委員: 陳智
Chen, Chih
蔡哲正
Tsai, Cho-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 47
中文關鍵詞: 模板電鍍奈米線
外文關鍵詞: template, electrodeposition, copper, nanowire
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   近十年來貴金屬奈米線因優異的導電、導熱性而有大量的相關研究。其中銅奈米線具有最低成本的優點,可作為連接奈米積體電路或透明導電膜之導電材料。但隨著元件尺寸的微縮,銅導線所承受的電流密度增加,可能因電遷移現象而造成元件損壞。有研究指出在電鍍銅中引入雙晶結構,可大幅提升其機械強度同時減緩電遷移的效應,但如何在複雜的電鍍製程中準確控制銅奈米線的成長方向及微結構,便是本研究所要探討的問題。本研究以自製的多孔性陽極氧化鋁模板搭配低溫脈衝電鍍來製備銅奈米線,並且於製程中控制多孔性模板的厚度與孔徑大小,探討模板形貌效應對於銅奈米線成長方向及微結構之影響,並進行銅奈米線電性量測分析。實驗結果指出,在厚度約40 μm的模板下,銅奈米線會隨著模板孔徑增加,晶體成長由<111>優選方向,變成無優選方向,最後則轉為<220>優選方向,TEM的觀察下,電鍍銅奈米線的微結構初始皆為多晶結構, 具<111>優選方向的銅奈米線,在中間階段產生<111>方向單晶且內部含有緻密雙晶,成長後期則轉為<220>方向成長;無優選方向的銅線中後期呈現兩至三個晶粒互相競爭的結果;<220>優選方向的銅線中後期以<220>方向成長,並有部分雙晶晶面存在。在厚度約50 μm的AAO模板中,所沉積之銅奈米線呈現高(111)面優選方向且不會受孔徑大小的影響,此類奈米線在中後期皆為<111>方向單晶且具有緻密雙晶結構,電性分析結果亦顯示其可承受高達108 A/cm2的崩潰電流密度,同時維持合理的電阻率。


      Noble metal nanowires have received great attention during past decade because of their spectacular electrical and thermal properties. Among them, copper nanowires (Cu NWs) is a popular interconnect material in integrated-circuit devices and transparent conducting film applications due to their cost advantage. With continuous scaling down of integrated-circuit devices, the increasing current density may lead to electromigration-induced device failure. It has been reported that the mechanical strength and electromigraton resistance of copper metallization can be greatly enhanced by introducing nanoscale twinning structure. However, how to control the growth orientation and microstructure in complicated electrodeposition process is a critical issue. In this study, Cu NWs were deposited in homemade porous anodic aluminum oxide (AAO) membrane by pulsed electrodeposition at low temperature. By controlling pore size and thickness of AAO membrane, we can synthesis Cu NWs with different crystallographic orientation and twinning structures. The growth orientation of Cu NWs change from <111> to mixed mode and to <220> with increasing pore size in thin AAO template. The corresponding microstructure changed from partially nanotwinning to polycrystalline and single crystal eventually. Surprisingly, the Cu NWs shows strong (111) preferred orientation when deposited in thicker AAO template in spite of different pore size. The Cu NWs show continuous and large portion nanotwinned structure which can sustain high failure current density up to 108 A/cm2 also remains reasonable electrical resistivity.

    目錄 摘要 I Abstract II 誌謝 III 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1研究背景 1 1.2研究動機 1 第二章 文獻回顧 2 2.1模板輔助電鍍金屬奈米線 2 2.1.1 電鍍金屬奈米線 2 2.1.2模板輔助電鍍製程 4 2.2 陽極氧化鋁模板 5 2.2.1陽極氧化鋁模板形貌與形成機制 6 2.2.2影響陽極氧化鋁模板形貌之因素 7 2.2.3陽極氧化處理後製程 9 2.3 銅奈米線之微結構與晶體成長優選方向 11 2.3.1奈米雙晶結構 11 2.3.2 金屬奈米線之晶體優選方向 13 第三章 實驗流程 17 3.1實驗設計與流程 17 3.1.1陽極氧化鋁模板製備 17 鋁片前處理 17 3.1.2雙晶結構銅奈米線製備 19 3.2電鍍銅奈米線之分析 20 3.2.1 X光粉末繞射 (XRD) 分析 20 3.2.2掃描式電子顯微鏡 (SEM) 分析 21 3.2.3穿透式電子顯微鏡 (TEM) 分析 22 3.2.4金屬奈米線電性分析 22 3.3實驗設備與儀器 23 第四章 結果與討論 24 4.1 陽極氧化鋁擴孔製程參數對銅奈米線電鍍成長優選方向之影響 24 4.1.1二次擴孔溫度對於模板形貌與織構係數影響 24 4.1.2 一次擴孔溫度與二次擴孔時間對於孔徑及TC值的影響 26 4.1.3 陽極氧化鋁模板厚度對電鍍銅奈米線成長方向的影響 28 4.2銅奈米線織構係數與顯微結構之關係 32 4.2.1 (111)優選方向銅奈米線之微結構 32 4.2.2 (220)優選方向銅奈米線之微結構 33 4.2.3無優選方向銅奈米線之微結構 34 4.2.4 電鍍金屬成核與成長之機制 35 4.3電性量測 38 第五章 結論 43 參考文獻 44

    [1] D Jang, X Li, H Gao, JR Greer, Deformation mechanisms in nanotwinned metal nanopillars. Nat. Nanotech. 7, 594-601 (2012).
    [2] KC Chen, WW Wu, CN Liao, LJ Chen, KN Tu , Observation of atomic diffusion at twin-modified grain boundaries in copper. Science 321, 1066-1069 (2008).
    [3] TC Chan, YM Lin, HW Tsai, ZM Wang, CN Liao, Growth of large-scale nanotwinned Cu nanowire arrays from anodic aluminum oxide membrane by electrochemical deposition process: controllable nanotwin density and growth orientation with enhanced electrical endurance performance. Nanoscale 6, 7332-7338 (2014).
    [4] CN Liao, YC Lu, D Xu, Modulation of crystallographic texture and twinning structure of Cu nanowires by electrodeposition. J. Electrochem. Soc. 160, D207-D211 (2013).
    [5] L Liang, Y Xu, C Wang, L Wen, Y Fang, Y Mi, Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries. Energ Environ. Sci. 8, 2954-2962 (2015).
    [6] R Mehta , S Chugh, and Z Chen, Enhanced electrical and thermal conduction in graphene-encapsulated copper nanowires. Nano Lett. 15, 2024-2030 (2015).
    [7] MET Molares, J Brötz, V Buschmann, D Dobrev, Etched heavy ion tracks in polycarbonate as template for copper nanowires. Nucl. Instrum. Methods Phys. Res. B. 185, 192-197 (2001).
    [8] T Gao, GW Meng, J Zhang, YW Wang, CH Liang, Template synthesis of single-crystal Cu nanowire arrays by electrodeposition. Appl. Phys. A-Mater. 73, 251-254 (2001).
    [9] G Riveros, H Gómez, A Cortes, RE Marotti, Crystallographically-oriented single-crystalline copper nanowire arrays electrochemically grown into nanoporous anodic alumina templates. Appl. Phys. A-Mater. 81, 17-24 (2005).
    [10] YT Peng, QF Chen, Fabrication and characterization of crystalline copper nanowires by electrochemical deposition inside anodic alumina template. Sci. Bull. 58, 3409-3414 (2013).
    [11] J Lee, S Farhangfar, J Lee, L Cagnon, R Scholz, Tuning the crystallinity of thermoelectric Bi2Te3 nanowire arrays grown by pulsed electrodeposition. Nanotechnology 19, 365701(2009).
    [12] MET Molares, V Buschmann, D Dobrev, Single-crystalline copper nanowires produced by electrochemical deposition in polymeric ion track membranes. Adv. Mater. 13, 62-65 (2001).
    [13] AMM Jani, D Losic, NH Voelcker, Nanoporous anodic aluminium oxide: advances in surface engineering and emerging applications. Prog. Mater. Sci. 58, 636-704 (2013).
    [14] GD Sulka, Ali Eftekhari. (2008). Nanostructured materials in electrochemistry: Wiley-VCH Verlag GmbH & Co. KGaA.
    [15] AP Li, F Müller, A Birner, K Nielsch, Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina. J. Appl. Phys. 84, 6023-6026 (1998).
    [16] L Zaraska, GD Sulka, and M Jaskuła, Anodic alumina membranes with defined pore diameters and thicknesses obtained by adjusting the anodizing duration and pore opening/widening time. J. Solid State Electr. 15, 2427-2436 (2011).
    [17] GD Sulka, A Brzózka, L Zaraska, M Jaskuła, Through-hole membranes of nanoporous alumina formed by anodizing in oxalic acid and their applications in fabrication of nanowire arrays. Electrochim Acta. 55, 4368-4376 (2010).
    [18] H Masuda, and K Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science 268, 1466 (1995).
    [19] G Sauer, G Brehm, S Schneider, K Nielsch, Highly ordered monocrystalline silver nanowire arrays. J. Appl. Phys. 91, 3243-3247 (2002).
    [20] WL Xu, H Chen, MJ Zheng, GQ Ding, WZ Shen, Optical transmission spectra of ordered porous alumina membranes with different thicknesses and porosities. Opt. Mater. 28, 1160-1165 (2006).
    [21] L Lu, Y Shen, X Chen, L Qian, K Lu, Ultrahigh Strength and High Electrical Conductivity in Copper. Science 304, 422-426 (2004).
    [22] D Xu, V Sriram, V Ozolins, JM Yang, KN Tu, In situ measurements of stress evolution for nanotwin formation during pulse electrodeposition of copper. J. Appl. Phys. 105, 023521 (2009).
    [23] S Zhong, T Koch, M Wang, T Scherer, S Walheim, Nanoscale twinned copper nanowire formation by direct electrodeposition. Small 5, 2265-2270 (2009).
    [24] XH Huang, GH Li, GZ Sun, XC Dou, L Li, LX Zheng, Initial growth of single-crystalline nanowires: From 3D nucleation to 2D growth. Nanoscale Res. Lett. 5, 1057 (2010).
    [25] J Duan, J Liu, D Mo, H Yao, K Maaz, Y Chen, Controlled crystallinity and crystallographic orientation of Cu nanowires fabricated in ion-track templates. Nanotechnology. 21, 365605 (2010).
    [26] XW Wang, GT Fei, XJ Xu, Z Jin, Size-dependent orientation growth of large-area ordered Ni nanowire arrays. J. Phys. Chem. B. 109, 24326-24330 (2005).
    [27] EA Dalchiele, RE Marotti, A Cortes, G Riveros, Silver nanowires electrodeposited into nanoporous templates: Study of the influence of sizes on crystallinity and structural properties. Physica E. 37, 184-188 (2007).
    [28] F Li, L Zhang, RM Metzger, On the growth of highly ordered pores in anodized aluminum oxide. Chem. Mater. 10, 2470-2480 (1998).
    [29] V Kozlov, LP Bicelli, Texture formation of electrodeposited fcc metals. Mater. Chem. Phys. 77, 289-293 (2003).
    [30] NA Pangarov, Preferred orientations in electro-deposited metals. J. Electroanal. Chem. 9, 70-85 (1959).
    [31] NA Pangarov, SD Vitkova, Preferred orientation of electrodeposited cobalt crystallites. Electrochim Acta. 11, 1733-1745 (1966).
    [32] B Hong, C Jiang, X Wang, Influence of complexing agents on texture formation of electrodeposited copper. Surf. Coat. Tech. 201(16) 7449-7452(2007).
    [33] C Wei, 銅/鎳核殼結構奈米線之製備與特性研究. 清華大學材料科學工程學系學位論文. 1-59 (2015).
    [34] TH Kim, XG Zhang, DM Nicholson, BM Evans, Large discrete resistance jump at grain boundary in copper nanowire. Nano Lett. 10, 3096-3100 (2010).
    [35] JM Roberts, AP Kaushik, JS Clarke. Resistivity of sub-30 nm copper lines. in Interconnect Technology Conference and 2015 IEEE Materials for Advanced Metallization Conference (IITC/MAM), 2015 IEEE International. IEEE (2015).
    [36] X Chen, L Lu, K Lu, Electrical resistivity of ultrafine-grained copper with nanoscale growth twins. J. Appl. Phys. 102, 083708 (2007).
    [37] Q Huang, CM Lilley, M Bode, R Divan, Surface and size effects on the electrical properties of Cu nanowires. J. Appl. Phys. 104, 023709 (2008).
    [38] I Nakamichi, Electrical resistivity and grain boundaries in metals. Materials Science Forum. 207, 47-58 (1996).
    [39] SB Cronin, YM Lin, O Rabin, MR Black, JY Ying, Making electrical contacts to nanowires with a thick oxide coating. Nanotechnology. 13.5,653 (2002).
    [40] G Schindler, G Steinlesberger, M Engelhardt, Electrical characterization of copper interconnects with end-of-roadmap feature sizes. Solid State Electron. 47, 1233-1236 (2003).

    QR CODE