研究生: |
周卓徵 Chou, Cho-Cheng |
---|---|
論文名稱: |
氮氣流量與基板偏壓對氮化鉬薄膜結構與性質之影響研究 Effects of Nitrogen Flow Rate and Substrate Bias on Structure and Properties of Molybdenum Nitride Thin Films |
指導教授: |
黃嘉宏
Huang, Jia-Hong |
口試委員: |
翁明壽
Wong, Ming-Show 吳芳賓 Wu, Fan-Bean |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 86 |
中文關鍵詞: | 氮化鉬 、金屬氮化物 、陶瓷薄膜 |
外文關鍵詞: | Molybdenum nitride, TMeN, Ceramic thin film |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的在於透過調控氮氣流量以及基板偏壓,探討實驗參數對於氮化鉬薄膜的結構與性質的影響,以及在氮缺乏情形下的相變化行為。本研究使用非平衡磁控濺鍍於矽(100)基板上鍍覆氮化鉬薄膜,並分別透過調控氮氣流量(N系列)與基板偏壓(B系列)製備出兩種系列的試片。由實驗結果得知薄膜的氮鉬比會隨著氮流量上升而增加(N/Mo=0.23-0.49),而當提高基板偏壓,氮鉬比的變化是不一致的(N/Mo=0.29-0.42)。在N系列的試片中,我們發現隨著氮流量上升,會有三種不同的相成分組成,在高氮流量8 sccm時為單相的γ-Mo2N,在中等流量6 - 7 sccm為雙相的Mo 和 γ-Mo2N,在低流量 4 - 5 sccm為混相的Mo、γ-Mo2N和β-Mo2N。在B系列中,大多數的試片為雙相的Mo和γ-Mo2N,只有在高偏壓時產生混相的Mo、γ-Mo2N和β-Mo2N。鍍製出的氮化鉬薄膜皆為(200)為主的優選方向。對於薄膜的結晶度,由於氮化鉬的反應較差,在低氮流量4 sccm時的結晶度較差;在足夠的氮流量5 sccm以上時可以呈現較好的結晶度。我們發現本研究中的基板偏壓範圍所導致的離子轟擊對於氮化鉬薄膜無明顯效果,提高基板偏壓並不會造成破壞,反而會幫助反應提升結晶度。氮化鉬薄膜的殘留應力介於 +0.3至-1.2 GPa之間,而電阻係數值介於78.7至150.2 μΩ-cm之間。金屬鉬的產生有助於釋放壓應力以及降低電阻係數值。具有優良機械性質之氮化鉬薄膜製程參數範圍很大,並可以容許大量的金屬鉬存在。由於奈米晶結構的關係,薄膜變形由晶界調控機制主導,因此硬度保持在22.4至25.8 GPa小範圍之間。在本研究中,推測β-Mo2N的形成可能是在Mo與γ-Mo2N的相界面之間發生異質成核,此推測由量測接觸角實驗驗證之。
The purposes of this study were to investigate the effect of nitrogen flow rate and substrate bias on the structure and properties of MoNx thin films and to explore the phase transition of MoNx under an N-deficient condition. The MoNx thin films were deposited on Si (100) substrate using DC unbalanced magnetron sputtering with varying nitrogen flow rates (N-series) and substrate bias (B-series). The N/Mo ratio increased (N/Mo=0.23-0.49) with nitrogen flow rate but varied (N/Mo=0.29-0.42) with substrate bias. For N-series, three types of MoNx thin films were found at different nitrogen flow rates, including single-phase γ-Mo2N at 8 sccm, Mo and γ-Mo2N phases at 6 - 7 sccm, and the mixed phases of Mo, γ-Mo2N, and β-Mo2N at 4 - 5 sccm. For B-series, most of the specimens are Mo and γ-Mo2N phases, while the mixture of Mo, γ-Mo2N, and β-Mo2N was also found at high substrate bias -90V. (200) preferred orientation was dominated for all specimens. Due to low reactivity between Mo and N, the crystallinity was poor at low nitrogen flow rate (4 sccm), while better crystallinity appeared at 5 sccm and above. Owing to weak ion peening effect in the range of substrate bias voltage of this study, the increasing substrate bias did not significantly damage the film structure but improve the crystallinity. The residual stress of the specimens ranged from +0.3 to -1.2GPa and the electrical resistivity ranged from 78.7 to 150.2 μΩ-cm. It was found that the existence of Mo could relieve compressive stress and decrease the electrical resistivity. The process window for maintaining good mechanical properties was quite large for the Mo2N thin films even with large fraction of metal phase. Due to the nanocrystalline structure, the hardness of the Mo2N coatings only varied in a narrow range from 22.4 to 25.8 GPa and the hardness was not significantly affected by the presence of metal phase. The finding that β-Mo2N appeared accompanying with Mo metal phase may be due to heterogeneous nucleation of β-Mo2N at the interface between γ-Mo2N and Mo phase.
[1] T.Suszko, W.Gulbiński, J.Jagielski, The role of surface oxidation in friction processes on molybdenum nitride thin films, Surf. Coat. Technol. 194 (2005) 319–324.
[2] H.Jehn, P.Ettmayer, The molybdenum-nitrogen phase diagram, J. Less-Common Met. 58 (1978) 85–98.
[3] I.Jauberteau, A.Bessaudou, R.Mayet, J.Cornette, J.Jauberteau, P.Carles, T.Merle-Méjean, Molybdenum nitride films: crystal structures, synthesis, mechanical, electrical and some other properties, Coatings. 5 (2015) 656–687.
[4] M.Kommer, T.Sube, A.Richter, M.Fenker, W.Schulz, B.Hader, J.Albrecht, Enhanced wear resistance of molybdenum nitride coatings deposited by high power impulse magnetron sputtering by using micropatterned surfaces, Surf. Coat. Technol. 333 (2018) 1–12.
[5] Z.Valentina, M.Enrico, D.Silvia Maria, M.Francesco, F.Monica, Mechanical properties and tribological behaviour of Mo-N coatings deposited via high power impulse magnetron sputtering on temperature sensitive substrates, Tribol. Int. 119 (2018) 372–380.
[6] X.Zhu, D.Yue, C.Shang, M.Fan, B.Hou, Phase composition and tribological performance of molybdenum nitride coatings synthesized by IBAD, Surf. Coat. Technol. 228 (2013) S184–S189.
[7] X.Chen, T.Zhang, M.Zheng, Z.Wu, W.Wu, C.Li, The reaction route and active site of catalytic decomposition of hydrazine over molybdenum nitride catalyst, J. Catal. 224 (2004) 473–478.
[8] W.Zheng, T.P.Cotter, P.Kaghazchi, T.Jacob, B.Frank, K.Schlichte, W.Zhang, D.S.Su, F.Schüth, R.Schlögl, Experimental and theoretical investigation of molybdenum carbide and nitride as catalysts for ammonia decomposition, J. Am. Chem. Soc. 135 (2013) 3458–3464.
[9] J.G.Choi, J.R.Brenner, C.W.Colling, B.G.Demczyk, J.L.Dunning, L.T.Thompson, Synthesis and characterization of molybdenum nitride hydrodenitrogenation catalysts, Catal. Today 15 (1992) 201–222.
[10] F.Cárdenas-Lizana, D.Lamey, S.Gómez-Quero, N.Perret, L.Kiwi-Minsker, M.A.Keane, Selective three-phase hydrogenation of aromatic nitro-compounds over β-molybdenum nitride, Catal. Today 173 (2011) 53–61.
[11] E.J.Markel, J.W.VanZee, Catalytic hydrodesulfurization by molybdenum nitride, J. Catal. 126 (1990) 643–657.
[12] K.Inumaru, K.Baba, S.Yamanaka, Synthesis and characterization of superconducting β-Mo2N crystalline phase on a Si substrate: An application of pulsed laser deposition to nitride chemistry, Chem. Mater. 17 (2005) 5935–5940.
[13] K.Inumaru, K.Baba, S.Yamanaka, Superconducting molybdenum nitride epitaxial thin films deposited on MgO and α-Al2O3 substrates by molecular beam epitaxy, Appl. Surf. Sci. 253 (2006) 2863–2869.
[14] H.Ihara, M.Hirabayashi, K.Senzaki, Y.Kimura, H.Kezuka, Superconductivity of B1-MoN films annealed under high pressure, Phys. Rev. B. 32 (1985) 1816–1817.
[15] K.Inumam, T.Nishikawa, K.Nakamura, S.Yamanaka, High-pressure synthesis of superconducting molybdenum nitride δ-MoN by in situ nitridation, Chem. Mater. 20 (2008) 4756–4761.
[16] K.Inumaru, K.Baba, S.Yamanaka, Structural distortion and suppression of superconductivity in stoichiometric B1-MoN epitaxial thin films, Phys. Rev. B - Condens. Matter Mater. Phys. 73 (2006) 1–4.
[17] Y.Zhao, S.He, B1-type MoN, a possible high Tc superconductor, Solid State Commun. 45 (1983) 281–283.
[18] P.Alén, M.Ritala, K.Arstila, J.Keinonen, M.Leskelä, Atomic layer deposition of molybdenum nitride thin films for Cu metallizations, J. Electrochem. Soc. 152 (2005) G361.
[19] V.P.Anitha, A.Bhattacharya, N.G.Patil, S.Major, Study of sputtered molybdenum nitride as a diffusion barrier, Thin Solid Films 236 (1993) 306–310.
[20] A.Kumar, A.Singh, R.Kumar, M.Kumar, D.Kumar, Reactively sputtered amorphous MoN film as a diffusion barrier for copper metallization, Optoelectron. Adv. Mater. Rapid Commun. 5 (2011) 54–57.
[21] F.F.Klimashin, N.Koutná, H.Euchner, D.Holec, P.H.Mayrhofer, The impact of nitrogen content and vacancies on structure and mechanical properties of Mo-N thin films, J. Appl. Phys. 120 (2016) 0–10.
[22] P.J.Kelly, R.D.Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum 56 (2000) 159–172.
[23] B.Window, N.Savvides, Unbalanced DC magnetrons as sources of high ion fluxes, J. Vac. Sci. Technol. A 4 (1986) 453–456.
[24] S.Gong, H.Chen, W.Li, B.Li, Thiophene hydrodesulfurization over alumina-supported β-Mo2N0.78 catalyst, Catal. Commun. 5 (2004) 621–624.
[25] T.Kadono, T.Kubota, Y.Okamoto, Hydrodesulfurization over intrazeolite molybdenum nitride clusters prepared by using hexacarbonyl molybdenum as a precursor, Catal. Today 87 (2003) 107–115.
[26] M.Nagai, Y.Yamamoto, R.Aono, Surface properties and fractal approach to molybdenum nitrides and their surface activity for hydrodenitrogenation, Colloid Surf. A-Physicochem. Eng. Asp. 241 (2004) 257–263.
[27] J.G.Howalt, T.Vegge, Electrochemical ammonia production on molybdenum nitride nanoclusters, Phys. Chem. Chem. Phys. 15 (2013) 20957–20965.
[28] J.G.Choi, H.J.Lee, L.T.Thompson, Temperature-programmed desorption of H2 from molybdenum nitride thin films, Appl. Surf. Sci. 78 (1994) 299–307.
[29] Y.J.Song, Z.Y.Yuan, One-pot Synthesis of Mo2N/NC Catalysts with Enhanced Electrocatalytic Activity for Hydrogen Evolution Reaction, Electrochem. Acta. 246 (2017) 536–543.
[30] J.Xie, S.Li, X.Zhang, J.Zhang, R.Wang, H.Zhang, B.Pan, Y.Xie, Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution, Chem. Sci. 5 (2014) 4615–4620.
[31] D.L.Perry, Handbook of inorganic compounds, CRC press, New York, 2016.
[32] H.O.Pierson, Handbook of refractory carbides and nitrides: properties, characteristics, processing and applications, William Andrew, New Jersey, 1996.
[33] B.D.Ozsdolay, K.Balasubramanian, D.Gall, Cation and anion vacancies in cubic molybdenum nitride, J. Alloys Compd. 705 (2017) 631–637.
[34] N.Koutná, D.Holec, O.Svoboda, F.F.Klimashin, P.H.Mayrhofer, Point defects stabilise cubic Mo-N and Ta-N, J. Phys. D. Appl. Phys. 49 (2016) 375303.
[35] J.F.Shackelford, Y.H.Han, S.Kim, S.H.Kwon, CRC materials science and engineering handbook, CRC press, New York, 2016.
[36] I.L.Shabalin, Molybdenum, in: Ultra-High Temp. Mater. I, Springer, New York, 2014: pp. 451–529.
[37] P.Hones, N.Martin, M.Regula, F.Lévy, Structural and mechanical properties of chromium nitride, molybdenum nitride, and tungsten nitride thin films, J. Phys. D. Appl. Phys. 36 (2003) 1023–1029.
[38] B.O.Postolnyi, V.M.Beresnev, G.Abadias, O.V.Bondar, L.Rebouta, J.P.Araujo, A.D.Pogrebnjak, Multilayer design of CrN/MoN protective coatings for enhanced hardness and toughness, J. Alloys Compd. 725 (2017) 1188–1198.
[39] S.T.Oyama, Introduction to the chemistry of transition metal carbides and nitrides, in: Chem. Transit. Met. Carbides Nitrides, Springer, Dordrecht, 1996: pp. 1–27.
[40] F.C.Nix, D.MacNair, The thermal expansion of pure metals. II: molybdenum, palladium, silver, tantalum, tungsten, platinum, and lead, Phys. Rev. 61 (1942) 74.
[41] B.D.Ozsdolay, X.Shen, K.Balasubramanian, G.Scannell, L.Huang, M.Yamaguchi, D.Gall, Elastic constants of epitaxial cubic MoNx (001) layers, Surf. Coat. Technol. 325 (2017) 572–578.
[42] T.Wang, G.Zhang, S.Ren, B.Jiang, Effect of nitrogen flow rate on structure and properties of MoNx coatings deposited by facing target sputtering, J. Alloys Compd. 701 (2017) 1–8.
[43] A.Gilewicz, B.Warcholinski, D.Murzynski, The properties of molybdenum nitride coatings obtained by cathodic arc evaporation, Surf. Coat. Technol. 236 (2013) 149–158.
[44] M.Ürgen, O.L.Eryilmaz, A.F.Çakir, E.S.Kayali, B.Nilüfer, Y.Işik, Characterization of molybdenum nitride coatings produced by arc-PVD technique, Surf. Coat. Technol. 94–95 (1997) 501–506.
[45] V.P.Anitha, S.Vitta, S.Major, Structure and properties of reactivity sputtered γ-Mo2N hard coatings, Thin Solid Films 245 (1994) 1–3.
[46] K.Balasubramanian, L.Huang, D.Gall, Phase stability and mechanical properties of Mo1-xNx with 0≤x≤1, J. Appl. Phys. 122 (2017) 0–12.
[47] R.Karam, R.Ward, The Preparation of β-Molybdenum Nitride, Inorg. Chem. 9 (1970) 1385–1387.
[48] A.I.Gusev, A.A.Rempel, A.J.Magerl, Disorder and order in strongly nonstoichiometric compounds: transition metal carbides, nitrides and oxides, New York, 2002.
[49] H.Ihara, Y.Kimura, K.Senzaki, H.Kezuka, M.Hirabayashi, Electronic structures of B1 MoN, fcc Mo2N, and hexagonal MoN, Phys. Rev. B. 31 (1985) 3177–3178.
[50] R.D.Arnell, P.J.Kelly, Recent advances in magnetron sputtering, Surf. Coat. Technol. 112 (1999) 170–176.
[51] J.Musil, V.Poulek, V.Valvoda, R.Kužel Jr, H.A.Jehn, M.E.Baumgärtner, Relation of deposition conditions of Ti-N films prepared by dc magnetron sputtering to their microstructure and macrostress, Surf. Coat. Technol. 60 (1993) 484–488.
[52] B.A.Movchan, A.V.Demichishin, Study of the Structure and Properties of Thick Vacuum Condensates of Nickel, Titanium, Tungsten, Aluminum Oxide and Zirconium Dioxide, Fiz Met. I Met. 28 (1969) 653–660.
[53] J.A.Thornton, High rate thick film growth, Annu. Rev. Mater. Sci. 7 (1977) 239–260.
[54] J.A.Thornton, Structure-zone models of thin films, Model. Opt. Thin Film 0821 (1988) 95.
[55] R.Messier, A.P.Giri, R.A.Roy, Revised structure zone model for thin film physical structure, J. Vac. Sci. Technol. 2 (1984) 500–503.
[56] A.Anders, A structure zone diagram including plasma-based deposition and ion etching, Thin Solid Films 518 (2010) 4087–4090.
[57] L.Stöber, J.P.Konrath, S.Krivec, F.Patocka, S.Schwarz, A.Bittner, M.Schneider, U.Schmid, Impact of sputter deposition parameters on molybdenum nitride thin film properties, J. Micromech. Microeng. 25 (2015) 074001.
[58] L.Stöber, J.P.Konrath, V.Haberl, F.Patocka, M.Schneider, U.Schmid, Nitrogen incorporation in sputter deposited molybdenum nitride thin films, J. Vac. Sci. Technol. 34 (2015) 021513.
[59] P.J.Rudnik, M.E.Graham, W.D.Sproul, High rate reactive sputtering of MoNx coatings, Surf. Coat. Technol. 49 (1991) 293–297.
[60] J.Y.Xiang, F.B.Wu, Gas inlet and input power modulated sputtering molybdenum nitride thin films, Surf. Coat. Technol. 332 (2017) 161–167.
[61] Y.G.Shen, Effect of deposition conditions on mechanical stresses and microstructure of sputter-deposited molybdenum and reactively sputter-deposited molybdenum nitride films, Mater. Sci. Eng. A 359 (2003) 158–167.
[62] W.Tillmann, D.Kokalj, D.Stangier, Influence of the deposition parameters on the texture and mechanical properties of magnetron sputtered cubic MoNx thin films, Materialia 5 (2019) 100186.
[63] M.Maoujoud, L.Binst, P.Delcambe, M.Offergeld-Jardinier, F.Bouillon, Deposition parameter effects on the composition and the crystalline state of reactively sputtered molybdenum nitride, Surf. Coat. Technol. 52 (1992) 179–185.
[64] M.K.Kazmanli, M.Ürgen, A.F.Cakir, Effect of nitrogen pressure, bias voltage and substrate temperature on the phase structure of Mo-N coatings produced by cathodic arc PVD, Surf. Coat. Technol. 167 (2003) 77–82.
[65] D.A.Shirley, High-resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B. 5 (1972) 4709.
[66] J.R.Rumble Jr, D.M.Bickham, C.J.Powell, The NIST x-ray photoelectron spectroscopy database, Surf. Interface Anal. 19 (1992) 241–246.
[67] G.T.Kim, T.K.Park, H.Chung, Y.T.Kim, M.H.Kwon, J.G.Choi, Growth and characterization of chloronitroaniline crystals for optical parametric oscillators: I. XPS study of Mo-based compounds, Appl. Surf. Sci. 152 (2002) 35–43.
[68] P.Scherrer, Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen, in: Kolloidchem. Ein Lehrb., Springer, Gottingen, 1912: pp. 387–409.
[69] L.V.Azaroff, M.J.Buerger, M.M.Fishman, The Powder Method in X-Ray Crystallography, McGraw-Hill, New York, 1958.
[70] W.C.Oliver, G.M.Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564–1583.
[71] G.G.Stoney, The tension of metallic films deposited by electrolysis, Proc. R. Soc. London. Ser. A, Contain. Pap. a Math. Phys. Character. 82 (1909) 172–175.
[72] D.K.Owens, R.C.Wendt, Estimation of the surface free energy of polymers, J. Appl. Polym. Sci. 13 (1969) 1741–1747.
[73] T.Young, An essay on the cohesion of fluids, Philos. Trans. R. Soc. London. (1805) 65–87.
[74] R.J.Good, L.A.Girifalco, A theory for estimation of surface and interfacial energies. III. Estimation of surface energies of solids from contact angle data, J. Phys. Chem. 64 (1960) 561–565.
[75] J.Kloubek, Interaction of Polar Forces and Their Contribution to the Work of Adhesion, J. Adhes. 6 (1974) 293–301.
[76] A.You, M.A.Y.Be, I.In, Thermal-Expansion Behavior of Two-Phase Solids, J. Appl. Phys. 41 (1970).
[77] K.N.Tu, Electronic thin-film reliability, Cambridge University Press, New York, 2010.
[78] J.H.Huang, K.W.Lau, G.P.Yu, Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering, Surf. Coat. Technol. 191 (2005) 17–24.
[79] J.H.Huang, C.H.Ho, G.P.Yu, Effect of nitrogen flow rate on the structure and mechanical properties of ZrN thin films on Si(1 0 0) and stainless steel substrates, Mater. Chem. Phys. 102 (2007) 31–38.
[80] C.K.Wu, J.H.Huang, G.P.Yu, Optimization of deposition processing of VN thin films using design of experiment and single-variable (nitrogen flow rate) methods, Mater. Chem. Phys. 224 (2019) 246–256.
[81] M.Ohring, Materials Science of Thin Films, Academic Press, New York, 1992.
[82] B.Bouaouina, A.Besnard, S.E.Abaidia, A.Airoudj, F.Bensouici, Correlation between mechanical and microstructural properties of molybdenum nitride thin films deposited on silicon by reactive R.F. magnetron discharge, Surf. Coat. Technol. 333 (2018) 32–38.
[83] X.Zuo, F.Xia, D.Zhang, P.L.Ke, Q.M.Wang, A.Y.Wang, The effect of substrate bias on the characteristics of CrN coatings deposited by DC-superimposed HiPIMS system, Int. J. Mod. Phys. B. 31 (2017) 1744032.
[84] J.W.Lee, S.K.Tien, Y.C.Kuo, The effects of substrate bias, substrate temperature, and pulse frequency on the microstructures of chromium nitride coatings deposited by pulsed direct current reactive magnetron sputtering, J. Electron. Mater. 34 (2005) 1484–1492.
[85] J.H.Huang, C.H.Lin, G.P.Yu, Texture evolution of vanadium nitride thin films, Thin Solid Films (2019) 137415.
[86] Y.H.Tsui, G.P.Yu, J.H.Huang, Effect of Substrate Bias on Structure and Properties of VN Thin Films Deposited by Unbalanced Magnetron Sputtering, National Tsing Hua University, (2017).
[87] J.D.Eshelby, F.C.Frank, F.R.N.Nabarro, The equilibrium of linear arrays of dislocations., Lond. Edinb. Dubl. Phil. Mag. 42 (1951) 351–364.
[88] G.E.Dieter, D.J.Bacon, Mechanical metallurgy, McGraw-hill, New York, 1986.
[89] Z.Shan, E.A.Stach, J.M.K.Wiezorek, J.A.Knapp, D.M.Follstaedt, S.X.Mao, Grain boundary-mediated plasticity in nanocrystalline nickel, Science 305 (2004) 654–657.
[90] T.A.Albright, J.K.Burdett, M.-H.Whangbo, Orbital interactions in chemistry, John Wiley & Sons, New Jersey, 2013.
[91] M.Iwamatsu, Heterogeneous nucleation on a completely wettable substrate, J. Chem. Phys. 134 (2011) 1–28.
[92] E.P.Donovan, G.K.Hubler, M.S.Mudholkar, L.T.Thompson, Ion-beam-assisted deposition of molybdenum nitride films, Surf. Coat. Technol. 66 (1994) 499–504.