簡易檢索 / 詳目顯示

研究生: 黃宗鈺
Huang, Tsung-Yu
論文名稱: 三種獨特的超材料以及其在 一、超寬頻濾波器,二、慢光裝置和三、隱形斗篷上的應用
Three remarkable metamaterials and their applications: 1. an ultrabroad filter, 2. slowing light devices and 3. the innovative cloak
指導教授: 嚴大任
Yen, Ta-Jen
口試委員: 謝漢萍
Shieh, Han-Ping
李正中
Lee, Cheng-Chung
蔡定平
Tsai, Ding-Ping
王立康
Wang, LiKarn
林宏洲
Lin, Hong-Cheu
劉全璞
Liu, Chuan-Pu
林鶴南
Lin, Heh-Nan
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 128
中文關鍵詞: 超材料超寬頻濾波器慢光裝置隱形斗篷
外文關鍵詞: metamaterial, an ultrabroad filter, slowing light devices, invisible cloak
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超材料(Metamaterial)是藉由次波長的人造單位結構,模仿自然界原子規則堆疊建構而成獨具特殊性的電磁物質。超材料擁有自然界鮮少甚至不存在的電磁響應,例如高頻磁響應、超低頻電漿頻率和負折射係數等。更重要的是,超材料具有藉由調控人造的單位結構達到進一步控制並調整光學響應的能力。因此,在此論文中,我們將設計三種獨特的超材料,並將之應用於包括超寬頻濾波器、慢光裝置以及隱形斗篷等不同領域中。
    首先,不論是在電子或光子元件中,濾波器皆是不可或缺的元件之一。然而,視不同頻段製作相對應的濾波器,尤其當頻率趨向高頻時,將是一大挑戰。此處,為了應用於60 GHz 免執照頻段,我們利用超物質特有的左手電磁響應並結合傳統材料的右手電磁響應形成左右手複合型濾波器,使其具有20 GHz的有效頻寬、250 dB/10 GHz 以上的邊帶轉換效率及高於-1 dB 穿透效率的濾波表現,更重要的是能同時滿足了好的品質因子及超大頻寬這兩項互斥的要素。
    再者,由於電磁波與物質較弱的交互作用,使得我們難以讀取藉由光子所攜帶的訊號。因此,我們發展了利用多角度入射皆能引發負折射係數的超材料建構左手性波導,進而利用在負折射係數波導中引發之負的古斯−漢欣效應,使光子在波導特定位置中來回盤旋,降低光子的等效速度,大幅增加光子與物質的作用時間,甚至能將光子完全儲存於負折射係數波導中,形成慢光裝置。
    最後,在光學中,設計光的傳遞路徑亦是一大重點。在傳統光纖傳遞訊號時,可能因為光纖扭曲造成訊號損耗或失真。為了解決這種不必要的損耗,研究學者藉由光學轉換(transformation optics)的理論,去扭曲光在空間的行進路線,使得光訊號不受光纖曲度產生損耗而完美地傳至接收段。在此,我們將使用光學轉換的概念並以隱形斗篷為例,同時引入互補媒介(complementary medium)的概念,使隱形斗篷能夠隱藏移動並帶有視野的任意物體。


    Metamaterials are a new class of artificial electromagnetic materials in which
    the building elements are smaller than the wavelength of illuminating light and
    arranged in the orders of natural atoms. They possess unprecedented electromagnetic responses such as high frequency magnetic responses, an ultra-low plasmonic frequency and negative refraction index, which are all rare or even not existing in nature. Moreover, metamaterials can further manipulate and control light by designing their unit cells instead of their constitutive materials. In this dissertation, we would design three remarkable metamaterials to approach applications such as an ultrabroad filter, slowing light devices and the innovative cloak.
    First of all, no matter in electronic or photonic devices, a filter is a crucial
    component to select signals from noises. However, it becomes a challenge to design filters especially for much higher frequency ranges. As an example, to design a filter in the unlicensed 60 GHz frequency range, we combine the right-handed response from nature materials and the left-handed response from metamaterials to form a composite right/ left-handed filter. The filter possesses the effective bandwidth of 20 GHz, the band-edge transitions of 250 dB/10 GHz, and the transmission efficiency above -1 dB, which accomplish the high quality factor and large effective bandwidth simultaneously.
    Next, due to much weaker interaction between electromagnetic waves and
    materials compared to the one between electrons and materials, it is difficult to
    manipulate information carried by photons. Thus, we employ negative Goos-
    Hänchen effect to detour photons around the critical thickness of the negative
    refractive waveguide composed of a multiple incidence metamaterial and slow down the speed of photons effectively to enhance the interaction time between photons and materials. Further, we can even store energy of photons in the waveguide completely as a light storage medium.
    Finally, to design the optical path is also an important issue in optics. For
    example, an optical fiber might lose its signals when the fiber is bent or twisted. To avoid unnecessary losses, researchers employ transformation optics to distort the coordinate systems to render that optical signals transmitting through a bent fiber insusceptibly. Here, we will demonstrate an innovative cloak of invisibility as an example to validate the robustness of transformation optics and also we bring in the concept of complementary medium in the design procedure to enable the cloak to conceal arbitrary multi-objects with movements and visions.

    摘要 I Abstract II Acknowledgements IV Contents VI List of Figures IX List of Tables XVIII Chapter 1 Introduction 1 1.1. Introduction of Metamaterials 1 1.2. Dissertation Organization 4 Chapter 2 Literature Review 5 2.1. Two-handed Metamaterials 5 2.2. Dielectric Metamaterials 7 2.3. Applications of Metamaterials 13 2.3.1. Slow Light 13 2.3.2. Transformation Optics 19 2.3.3. Perfect Absorbers 26 Chapter 3 Simulation methods, sample fabrication and measurement 30 3.1. Two Simulation Methods 30 3.1.1. Finite Integration Technique 30 3.1.2. Finite Element Method 32 3.2. Fabrication Methods 34 3.2.1. Printed-circuit-board Fabrication Method 34 3.2.2. Ceramic Fabrication Method 34 3.3. Microwave Measurement 35 Chapter 4 An ultrabroad filter 37 4.1. Introduction and Motivation 37 4.2. Design of Two-handed Metamaterials 38 4.3. Fabrication, Simulation, Measurement, and Discussion 40 4.4. Summary 46 Chapter 5 Slowing light devices 47 5.1. Introduction and Motivation 47 5.2. Slowing Light via Anisotropic Negative Refraction Index Media 49 5.2.1. Simulation and Measurement 49 5.2.2. Discussions 54 5.3. Slowing Light via Cubic Dielectric Metamaterials 56 5.3.1. Simulation and Measurement 57 5.3.2. Discussions 59 5.4. Slowing Light via Tapered Dielectric Metamaterials 60 5.4.1. Simulation and Measurement 61 5.4.2. Discussions 64 5.5. Summary 66 Chapter 6 The innovative cloak 68 6.1. Introduction and Motivation 68 6.2. The Innovative Cloak and Illusion Optics 69 6.2.1. Theoretical Analysis and Simulation of the Innovative Cloak 69 6.2.2. Simulation of Illusion Optics 77 6.3. Experimental Demonstration of the Innovative cloak 79 6.3.1. Numerical Simulation for the Stratified Cloak 80 6.3.2. The Cube-based Dielectric Metamaterial Cloak 82 6.3.3. The Annulus-based Dielectric Metamaterial Cloak 85 6.4. Summary 90 Chapter 7 Conclusions 92 7.1. Conclusions 92 7.2. Future Prospect 93 Chapter 8 References 94 Appendix I Optimizing based on Genetic Algorithm 99 AI.1. Introduction and Motivation 99 AI.2. The Operators in the Genetic Algorithm 101 AI.2.1. The selection operator 101 AI.2.2. The crossover operator 102 AI.2.3. The mutation operator 104 AI.3. Double-sided Perfect Absorbers 105 AI.4. Transmission Lines with the Defected Ground Structure 107 AI.5. Summary 109 Appendix II Matlab Code of Oscillatory Modes of LHMWs 110 Appendix III VBA Code for Genetic Algorithm 112 Academic Publications 126

    1. V. VESELAGO, "Electrodynamics of Substances with Simultaneously Negative Values of Sigma and Mu," Sov Phys Uspekhi 10, 509 (1968).
    2. T. J. Yen, "Terahertz Magnetic Response from Artificial Materials," Science 303, 1494–1496 (2004).
    3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Techn. 47, 2075–2084 (1999).
    4. J. Pendry, A. Holden, W. Stewart, and I. Youngs, "Extremely Low Frequency Plasmons in Metallic Mesostructures," Phys. Rev. Lett. 76, 4773–4776 (1996).
    5. J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85, 3966–3969 (2000).
    6. R. A. Shelby, "Experimental Verification of a Negative Index of Refraction," Science 292, 77–79 (2001).
    7. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315, 1686–1686 (2007).
    8. C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Y. S. Kivshar, "Wire Metamaterials: Physics and Applications," Adv. Mater. 24, 4229–4248 (2012).
    9. J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, "Slow light at terahertz frequencies in surface plasmon polariton assisted grating waveguide," J. Appl. Phys. 106, 103715 (2009).
    10. S. Rawal, R. Sinha, and R. M. De La Rue, "Slow light miniature devices with ultra-flattened dispersion in silicon-on-insulator photonic crystal," Optics Express 17, 13315–13325 (2009).
    11. S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, and A. Bettiol, "Analogue of electromagnetically induced transparency in a terahertz metamaterial," Phys. Rev. B 80, 153103 (2009).
    12. N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, "Perfect Metamaterial Absorber," Phys. Rev. Lett. 100, 207402 (2008).
    13. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Optics Express 16, 7181–7188 (2008).
    14. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial Electromagnetic Cloak at Microwave Frequencies," Science 314, 977–980 (2006).
    15. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, "An optical cloak made of dielectrics," Nature Materials 8, 568–571 (2009).
    16. Y. Lai, H. Chen, Z.-Q. Zhang, and C. Chan, "Complementary Media Invisibility Cloak that Cloaks Objects at a Distance Outside the Cloaking Shell," Phys. Rev. Lett. 102, 093091 (2009).
    17. T.-Y. Huang, C.-Y. Chen, and T.-J. Yen, "Mid-infrared artificial magnetism directly from magnetic field coupling," J. Appl. Phys. 110, 093907–4 (2011).
    18. V. M. Shalaev, W. Cai, U. K. Chettiar, H.-K. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, "Negative index of refraction in optical metamaterials," Opt. Lett., OL 30, 3356–3358 (2005).
    19. C. Caloz and T. Itoh, "Transmission Line Approach of Left-Handed (LH) Materials and Microstrip Implementation of an Artificial LH Transmission Line," IEEE Trans. Antennas Propagat. 52, 1159–1166 (2004).
    20. Y.-J. C. T.-J. Yen, "A highly symmetric two-handed metamaterial spontaneously matching the wave impedance," Optics Express 16, 12764–12770 (2008).
    21. Y.-J. Chiang, C.-S. Yang, Y.-H. Yang, C.-L. Pan, and T.-J. Yen, "An ultrabroad terahertz bandpass filter based on multiple-resonance excitation of a composite metamaterial," Appl. Phys. Lett. 99, 191909 (2011).
    22. T.-Y. Huang and T.-J. Yen, "A High-Ratio Bandwidth Square-Wave-Like Bandpass Filter by Two-Handed Metamaterials and its Application in 60 GHz Wireless Communication," Progress In Electromagnetics Research 21, 19–29 (2011).
    23. S. O'Brien and J. Pendry, "Photonic band-gap effects and magnetic activity in dielectric composites," J. Phys.: Condens. Matter 14, 4035–4044 (2002).
    24. L. Peng, L. Ran, H. Chen, H. Zhang, J. Kong, and T. Grzegorczyk, "Experimental Observation of Left-Handed Behavior in an Array of Standard Dielectric Resonators," Phys. Rev. Lett. 98, 157403 (2007).
    25. Y.-J. Lai, C.-K. Chen, and T.-J. Yen, "Creating negative refractive identity via single-dielectric resonators," Optics Express 17, 12960–12970 (2009).
    26. M. D. Lukin and A. Imamoğlu, "Controlling photons using electromagnetically induced transparency," Nature 413, 273–276 (2001).
    27. Bin Wu, J. F. Hulbert, E. J. Lunt, K. Hurd, A. R. Hawkins, and H. Schmidt, "Slow light on a chip via atomic quantum state control," Nature Photonics 4, 776–779 (2010).
    28. M. Kang, Y. N. Li, J. Chen, J. Chen, Q. Bai, H. T. Wang, and P. H. Wu, "Slow light in a simple metamaterial structure constructed by cut and continuous metal strips," Appl. Phys. B 100, 699–703 (2010).
    29. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, "Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit," Nature Materials 8, 758–762 (2009).
    30. C.-K. Chen, Y.-C. Lai, Y.-H. Yang, C.-Y. Chen, and T.-J. Yen, "Inducing transparency with large magnetic response and group indices by hybrid dielectric metamaterials," Optics Express 20, 6952–6960 (2012).
    31. K. L. Tsakmakidis, C. Hermann, A. Klaedtke, C. Jamois, and O. Hess, "Surface plasmon polaritons in generalized slab heterostructures with negative permittivity and permeability," Phys. Rev. B 73, 085104 (2006).
    32. K. L. Tsakmakidis, A. Klaedtke, D. P. Aryal, C. Jamois, and O. Hess, "Single-mode operation in the slow-light regime using oscillatory waves in generalized left-handed heterostructures," Appl. Phys. Lett. 89, 201103 (2006).
    33. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, "“Trapped rainbow” storage of light in metamaterials," Nature 450, 397–401 (2007).
    34. J. B. Pendry, "Controlling Electromagnetic Fields," Science 312, 1780–1782 (2006).
    35. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nature Photonics 1, 224–227 (2007).
    36. H. Chen, B. Hou, S. Chen, X. Ao, W. Wen, and C. Chan, "Design and Experimental Realization of a Broadband Transformation Media Field Rotator at Microwave Frequencies," Phys. Rev. Lett. 102, 183903 (2009).
    37. U. Leonhardt, "Optical Conformal Mapping," Science 312, 1777–1780 (2006).
    38. C. A. Valagiannopoulos and P. Alitalo, "Electromagnetic cloaking of cylindrical objects by multilayer or uniform dielectric claddings," Phys. Rev. B 85, 115402 (2012).
    39. F. Guevara Vasquez, G. W. Milton, and D. Onofrei, "Broadband exterior cloaking," Optics Express 17, 14800–6 (2009).
    40. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband Ground-Plane Cloak," Science 323, 366–369 (2009).
    41. H. Ma, S. Qu, Z. Xu, and J. Wang, "The open cloak," Appl. Phys. Lett. 94, 103501 (2009).
    42. T. Han, X. Tang, and F. Xiao, "Open Cloaks Via Embedded Optical Transformation," IEEE Microw. Wireless Compon. Lett. 20, 64–66 (2010).
    43. D. R. Smith, "Metamaterials and Negative Refractive Index," Science 305, 788–792 (2004).
    44. Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. Chan, "Illusion Optics: The Optical Transformation of an Object into Another Object," Phys. Rev. Lett. 102, 253902 (2009).
    45. W. X. Jiang, H. F. Ma, Q. Cheng, and T. J. Cui, "Illusion media: Generating virtual objects using realizable metamaterials," Appl. Phys. Lett. 96, 121910 (2010).
    46. Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, "Transformational Plasmon Optics," Nano Lett. 10, 1991–1997 (2010).
    47. H. Wakatsuchi, S. Greedy, C. Christopoulos, and J. Paul, "Customised broadband metamaterial absorbers for arbitrary polarisation," Optics Express 18, 22187–22198 (2010).
    48. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nature Communications 2, 517 (2011).
    49. J. Grant, Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, "Polarization insensitive terahertz metamaterial absorber," Opt. Lett., OL 36, 1524–1526 (2011).
    50. R. Marklein, "The finite integration technique as a general tool to compute acoustic, electromagnetic, elastodynamic, and coupled wave fields," Review of radio science 2002, 201–244 (1999).
    51. M. C. T. Weiland, "Discrete electromagnetism with the finite integration technique," Progress In Electromagnetics Research 32, 65–87 (2001).
    52. Binyan Yao, Yonggang Zhou, Qunsheng Cao, and Yinchao Chen, "Compact UWB Bandpass Filter With Improved Upper-Stopband Performance," IEEE Microw. Wireless Compon. Lett. 19, 27–29 (2008).
    53. Kaixue Ma, K. C. B. Liang, R. M. Jayasuriya, and Kiat Seng Yeo, "A Wideband and High Rejection Multimode Bandpass Filter Using Stub Perturbation," IEEE Microw. Wireless Compon. Lett. 19, 24–26 (2009).
    54. B. Yang, E. Skafidas, and R. J. Evans, "Design of 60 GHz millimetre-wave bandpass filter on bulk CMOS," IET Microw. Antennas Propag. 3, 943 (2009).
    55. L. Fu, H. Schweizer, H. Guo, N. Liu, and H. Giessen, "Synthesis of transmission line models for metamaterial slabs at optical frequencies," Phys. Rev. B 78, 115110 (2008).
    56. S. Çimen, G. Çakir, and L. Sevgi, "Metamaterial slabs and realization of all-type filter characteristics: Numerical and analytical investigations," Microw. Opt. Technol. Lett. 51, 894–899 (2009).
    57. L. Fu, H. Schweizer, H. Guo, N. Liu, and H. Giessen, "Analysis of metamaterials using transmission line models," Appl. Phys. B 86, 425–429 (2007).
    58. D. Smith, D. Vier, T. Koschny, and C. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Phys. Rev. E 71, 036617 (2005).
    59. X. Chen, T. Grzegorczyk, B. Wu, J. Pacheco, and J. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E 70, 016608 (2004).
    60. R. W. Ziolkowski, "Design, fabrication, and testing of double negative metamaterials," IEEE Trans. Antennas Propagat. 51, 1516–1529 (2003).
    61. T. Koschny, M. Kafesaki, E. Economou, and C. Soukoulis, "Effective medium theory of left-handed materials," Phys. Rev. Lett. 93, 107402 (2004).
    62. J.-J. Li and K.-D. Zhu, "A quantum optical transistor with a single quantum dot in a photonic crystal nanocavity," Nanotechnology 22, 055202 (2010).
    63. L. Thévenaz, "Slow and fast light in optical fibres," Nature Photonics 2, 474–481 (2008).
    64. Byoung-Joon Seo, Seongku Kim, B. Bortnik, H. Fetterman, D. Jin, and R. Dinu, "Optical Signal Processor Using Electro-Optic Polymer Waveguides," J. Lightwave Technol. 27, 3092–3106 (2009).
    65. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. Zibrov, V. Vuletic, and M. Lukin, "Efficient All-Optical Switching Using Slow Light within a Hollow Fiber," Phys. Rev. Lett. 102, 203902 (2009).
    66. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, "Plasmon-Induced Transparency in Metamaterials," Phys. Rev. Lett. 101, 047401 (2008).
    67. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, "Planar designs for electromagnetically induced transparency in metamaterials," Optics Express 17, 5595–5605 (2009).
    68. J. He, J. Yi, and S. He, "Giant negative Goos-Hänchen shifts for a photonic crystal with a negative effective index," Optics Express 14, 3024–3029 (2006).
    69. S. Mazoyer, J. Hugonin, and P. Lalanne, "Disorder-Induced Multiple Scattering in Photonic-Crystal Waveguides," Phys. Rev. Lett. 103, 063903 (2009).
    70. L. Chen, G. Wang, Q. Gan, and F. Bartoli, "Trapping of surface-plasmon polaritons in a graded Bragg structure: Frequency-dependent spatially separated localization of the visible spectrum modes," Phys. Rev. B 80, 161106 (2009).
    71. W. T. Lu, S. Savo, B. D. F. Casse, and S. Sridhar, "Slow microwave waveguide made of negative permeability metamaterials," Microw. Opt. Technol. Lett. 51, 2705–2709 (2009).
    72. T.-Y. Huang, T.-C. Yang, and T.-J. Yen, "Slowing light by exciting the fundamental degeneracy oscillatory mode in a negative refractive waveguide," Appl. Phys. Lett. 102, 111102 (2013).
    73. X. P. Zhao, W. Luo, J. X. Huang, Q. H. Fu, K. Song, X. C. Cheng, and C. R. Luo, "Trapped rainbow effect in visible light left-handed heterostructures," Appl. Phys. Lett. 95, 071111 (2009).
    74. E. I. Kirby, J. M. Hamm, K. L. Tsakmakidis, and O. Hess, "FDTD analysis of slow light propagation in negative-refractive-index metamaterial waveguides," J. Opt. A: Pure Appl. Opt. 11, 114027 (2009).
    75. Q. Gan, Z. Fu, Y. Ding, and F. Bartoli, "Ultrawide-Bandwidth Slow-Light System Based on THz Plasmonic Graded Metallic Grating Structures," Phys. Rev. Lett. 100, 256803 (2008).
    76. M. Navarro-Cía, M. Aznabet, M. Beruete, F. Falcone, O. El Mrabet, M. Sorolla, and M. Essaaidi, "Stacked complementary metasurfaces for ultraslow microwave metamaterials," Appl. Phys. Lett. 96, 164103 (2010).
    77. V. N. Smolyaninova, I. I. Smolyaninov, A. V. Kildishev, and V. M. Shalaev, "Experimental observation of the trapped rainbow," Appl. Phys. Lett. 96, 211121 (2010).
    78. T.-C. Yang, Y.-H. Yang, and T.-J. Yen, "An anisotropic negative refractive index medium operated at multiple-angle incidences," Optics Express 17, 24189–24197 (2009).
    79. Y.-C. Lai, C.-K. Chen, Y.-H. Yang, and T.-J. Yen, "Low-loss and high-symmetry negative refractive index media by hybrid dielectric resonators," Optics Express 20, 2876–2880 (2012).
    80. A. J. Ward and J. B. Pendry, "Refraction and geometry in Maxwell's equations," Journal of Modern Optics 43, 773 (1996).
    81. Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, "Ideal Cylindrical Cloak: Perfect but Sensitive to Tiny Perturbations," Phys. Rev. Lett. 99, 113903-4 (2007).
    82. T. Yang, H. Chen, X. Luo, and H. Ma, "Superscatterer: Enhancement of scattering with complementary media," Optics Express 16, 18545–6 (2008).
    83. X. Luo, T. Yang, Y. Gu, H. Chen, and H. Ma, "Conceal an entrance by means of superscatterer," Appl. Phys. Lett. 94, 223513 (2009).
    84. S. A. Cummer, B.-I. Popa, D. Schurig, and D. R. Smith, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, (2006).
    85. J. Yang, M. Huang, Y. L. Li, T. Li, and J. Sun, "Reciprocal Invisible Cloak with Homogeneous Metamaterials," Progress In Electromagnetics Research M 21, 105–115 (2011).
    86. J. J. Yang, M. Huang, F. Chun Mao, G. H. Cai, and Y. Z. Lan, "Electromagnetic Reciprocal Cloak with Only Axial Material Parameter Spatially Variant," International Journal of Antennas and Propagation 2012, 1–9 (2012).
    87. A. V. K. V. M. Shalaev, "Engineering space for light via transformation optics," Opt. Lett., OL 33, 43–45 (2008).
    88. J. P. Turpin, A. T. Massoud, Z. H. Jiang, P. L. Werner, and D. H. Werner, "Conformal mappings to achieve simple material parameters for transformation optics devices," Optics Express 18, 244–9 (2010).
    89. T.-Y. Huang, H.-C. Lee, I.-W. Un, and T.-J. Yen, "An innovative cloak enables arbitrary multi-objects hidden with visions and movements," Appl. Phys. Lett. 101, 151901 (2012).
    90. T. Tyc and U. Leonhardt, "Transmutation of singularities in optical instruments," New J. Phys. 10, 115038 (2008).
    91. C. Li, X. Liu, G. Liu, F. Li, and G. Fang, "Experimental demonstration of illusion optics with “external cloaking” effects," Appl. Phys. Lett. 99, 084104 (2011).
    92. C.-S. Kim, J.-S. Park, D. Ahn, and J.-B. Lim, "A novel 1-D periodic defected ground structure for planar circuits," Microwave and Guided Wave Letters, IEEE 10, 131–133 (2000).
    93. A. Mohan and A. Biswas, "Dual-band bandpass filter using defected ground structure," Microw. Opt. Technol. Lett. 51, 475–479 (2009).
    94. Young-Ho Ryu, Jae-Hyun Park, Jeong-Hae Lee, Joon-Yub Kim, and Heung-Sik Tae, "DGS Dual Composite Right/LeftHanded Transmission Line," IEEE Microw. Wireless Compon. Lett. 18, 434–436 (2008).
    95. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Luo, "Design principles for infrared wide-angle perfect absorber based on plasmonic structure," Optics Express 19, 17413–17420 (2011).
    96. A. Sanada, C. Caloz, and T. Itoh, "Characteristics of the composite right/left-handed transmission lines," IEEE Microw. Wireless Compon. Lett. 14, 68–70 (2004).
    97. S. K. Podilchak, B. M. Frank, A. P. Freundorfer, and Y. M. M. Antar, "Composite right/left handed artificial transmission line structures in CMOS for controlled insertion phase at 30 GHz," Int J RF and Microwave Comp Aid Eng 19, 163–169 (2009).
    98. J. Sun, L. Liu, G. Dong, and J. Zhou, "An extremely broad band metamaterial absorber based on destructive interference," Optics Express 19, 21155–21162 (2011).
    99. J. Lee and S. Lim, "Bandwidth-enhanced and polarisation-insensitive metamaterial absorber using double resonance," Electron. Lett. 47, 8 (2011).
    100. C. M. Watts, X. Liu, and W. J. Padilla, "Metamaterial Electromagnetic Wave Absorbers," Adv. Mater. 24, OP98–OP120 (2012).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE