研究生: |
陳文泰 Wen-Tai Chen |
---|---|
論文名稱: |
巨磁阻自旋閥在生醫感測上的應用 GMR spin valve sensors for biological application |
指導教授: |
曾繁根
Fan-Gang Tseng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 生醫晶片 、自旋閥 、生醫感測 、巨磁阻 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文欲利用磁性奈米微粒代替螢光分子作為免疫反應的標的物。論文第一部份為巨磁阻自旋閥多層膜的製備,第二部分為自旋閥感測器原件的製作。
首先第一部份,我們使用RF sputter製備磁性多層膜,所使用的靶材有Ni80Fe20、Ir20Mn80、Ta、Cu。自旋閥膜層的設計為SiO2/Ta
/NiFe/Cu/NiFe/IrMn/Ta。藉由四點探針來量測薄膜的磁阻變化,VSM來量測薄膜的磁化曲線,並用Auger來分析薄膜的組成成份,用XRD分析晶體結構,AFM量測薄膜粗糙度和膜厚,FESEM量測薄膜厚度和均勻性。
第一代自旋閥完成後,在磁性、電性、結構上並沒有良好的結果。推測可能是薄膜的粗糙度太大造成自旋閥失效。因此調變濺鍍機台的power、工作壓力,以求達到高平整的薄膜。但實驗後發現Ag薄膜本身的粗糙度偏高,約為2nm,並不適合作為自旋閥的材料。
第二代自旋閥藉由NiFe當seed layer,可成功的鍍出(111)優選方向薄膜,成功的做出鐵磁反鐵磁的交換異向性,在磁滯曲線量測上可得到完整的兩個鐵磁層翻轉路徑。在磁阻變化上量測到了形狀像似pseudo spin valves的磁阻變化曲線,磁阻變化的大小為0.2%。
論文的第二部份,首先測試了lift off、濕蝕刻、RIE(離子轟擊)三種方法來定義自旋閥的形狀。第二道光罩使用lift off的方式定義出Al導線的位置,第三道光照使用RIE定義SiO2,最後(第四道)在SiO2上利用SU8光阻定義免疫反應區域。
原件製作完成後,使用帶有Cy3的anti-rabbit Ig G及APTS測試sensor的免疫反應區域,測試結果顯示,使用SU8光阻在SiO2上定義反應區後,SiO2仍可有效與APTS鍵結,因此成功證實sensor的免疫反應區域是可用的。
使用APTS、goat anti rabbit Ig G、rabbit Ig G、goat anti rabbit Ig G+Cy3初步測試了sandwich免疫反應,測試結果顯示在SiO2上使用這四種分子來做sandwich免疫反應是可行的。
另外,與材料系尖端儲存薄膜實驗室合力製作的自旋閥感測晶片,自旋閥在製作成原件後幾乎沒有磁阻變化損失(3%變成2.9%)。藉由改變snsor的長寬比可以改變sensor自由層的Hc大小。
1.Vapor phase deposited self-assembled monolayers applied to bio-blocking process,清華大學謝馨儀碩士論文, Chap1,2
2. Detection of cystic fibrosis related DNA targets using AC field focusing of magnetic labels and spin valve sensors, H.A. Ferreira, D.L. Graham, P.P. Freitas, IEEE, ( 2005) 396
3. Use of Magnetoresistive Biochips for Monitoring of Pathogenic Microorganisms in Water through Bioprobes: Oligonucleotides and Antibodies, H.A. Ferreira, D.L. Graham, P.P. Freitas, NSTI-Nanotech 2005, 1(2005) 493-496
4. Magnetoresistive-based biosensors and biochips, H.A. Ferreira, D.L. Graham, P.P. Freitas, Trends in biotechnology, 22 (2004) 455-462
5. High sensitivity detection of molecular recognition using magnetically labelled biomolecules and magnetoresistive sensors, H.A. Ferreira, D.L. Graham, P.P. Freitas, Biosensors and Bioelectronics , 18 (2003) 483-488
6. DETECTION OF BIOMOLECULAR RECOGNITION USING NANOMETER-SIZED MAGNETIC LABELS AND SPIN-VALVE SENSORS, H.A. Ferreira, D.L. Graham, P.P. Freitas, IEEE (2003)
7. Single magnetic microsphere placement and detection on-chip using current line designs with integrated spin valve sensors: Biotechnological applications, H.A. Ferreira, D.L. Graham, P.P. Freitas, J. Appl. Phys., 91 (2002) 7786-7788
8. Spin valve sensors for ultrasensitive detection of superparamagnetic nanoparticles for biological applications, Shan X. Wang, Sensors and Actuators A , 126 (2006) 98–106
9.Towards a magnetic microarray for sensitive diagnostics, S.X. Wang et al., Journal of Magnetism and Magnetic Materials, 293 (2005) 731–736
10.Bio-functionalization of Monodisperse Magnetic Nanoparticles and Their Use as Biomolecular Labels in a Magnetic Tunnel Junction Based Sensor, Shan X. Wang, Stephanie G. Grancharov, J. Phys. Chem. B, 109 (2005) 13030-13035
11. Model and Experiment of Detecting Multiple Magnetic Nanoparticles as Biomolecular Labels by Spin Valve Sensors, Shan X. Wang, IEEE TRANSACTIONS ON MAGNETICS, VOL. 40 (2004) 3000-3002
12. Detection of single micron-sized magnetic bead and magnetic nanoparticles using spin valve sensors for biological applications, Shan X. Wang, J. Appl. Phys., 93 ( 2003)7557-7559
13. Analytical and Micromagnetic Modeling for Detection of a Single Magnetic Microbead or Nanobead by Spin Valve Sensors, Shan X. Wang, IEEE TRANSACTIONS ON MAGNETICS, 39 (2003) 3313
14.Design and performance of GMR sensors for the detection of magnetic microbeads in biosensors, M.M. Miller, J.C. Rife, Sensor and actuators, A 107 (2003)209~218
15. Detection of a micron-sized magnetic sphere using a ring-shaped anisotropic magnetoresistance-based sensor: A model for a magnetoresistance-based biosensor, Miller et al., Appl. Phys. Lett., 81 (2002) 2211-2213
16. A DNA array senor utilizing magnetic microbeads and magnetoelectronic detection, M.M. Miller, R.J. Colton, Journal of magnetism and magnetic material 225 (2001)139-144
17. The BARC biosensor applied to the setection of biological warfare agents, M.M. Miller, R.J. Colton, Biosensors and Bioelectronics 14 (2000) 805-813
18. A biosensor based on magnetoresistance technology, David R. Baselt, R.J. Colton, Biosensors and Bioelectronics 13 (1998) 731-739
19.Magnetic particles as markers and carriers of Biomolecules, H. Br.uckl, M. Panhorst, J. Schotter, P.B. Kamp and A. Becker, IEE Proc.-Nanobiotechnol., 152 (2005) 41-46
20.Comparison of a prototype magnetoresistive biosensor to standard fluorescent DNA detection, J. Schotter et al., Biosensors and Bioelectronics, 19 (2004) 1149–1156
21. A Biochip Based on Magnetoresistive Sensors, J. Schotter, P. B. Kamp, A. Becker, A. Pühler, D. Brinkmann, W. Schepper, H. Brückl, and G. Reiss, IEEE TRANSACTIONS ON MAGNETICS, 38 (2002) 3365-3367
22.A biochip sensor based on giant and tunnel magneto resistance, J. Schotter et al., IEEE 2002
23. Single molecule detection with magnetic beads- computer simulation, J schotter et al., Journal of Magnetism and Magnetic Materials, 272(2002) 1695-1696
………..
24.The fabrication of Iron Oxide magnetic nanoparticles and the application to improve the binding efficiency of the IgG and Thiol SAMs, 清華大學林俊毅碩士論文
25.Material science and engineering an introduction, William D. Callister, Chapter21
26.Magnetic materials, Nicola A. Chapter 4,5,7,8
27.Introduction to magnetism and magnetic recording, R. Lawrence Comstock, Chapter 4
28. New Magnetic Anisotropy, W.H. Meiklejohn and C.P. Bean, Phys. Rev., 102(1956)1413-1414
29. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices, M. N. Baibich, Phy. Rev. Lett., 61 (1988) 2472
30. Magnetoresistance and spin electronics, A. Barthelemy et al., Journal of Magnetism and Magnetic Materials, VOL. 242–245 (2002) 68–76
31. Giant magnetoresistance materials and their potential as read headsensors, Robert L. White, IEEE TRANSACTIONS ON MAGNETICS, 30(1994)346-352
32. Magnetotransport properties of magnetically soft spin-valve structures, B. Dieny, V.S. Sperious, S. Metin, S.S.P. Parkin, B.A. Gurney, P. Baumgart,D.R. Wilhoit, J. Appl. Phys. 69 (1991) 4774–4779.
33. High magnetoresistance permalloy films deposited on a thin NiFeCr or NiCr underlayer, W.-Y. Lee, M. F. Toney, P. Tameerug and E. Allen, J. Appl. Phys., 87(2000)6992-6994
34. Enhancement of exchange bias in Mn-Ir/Co-Fe based spin valves with an ultrathin Cu underlayer and in situ Mn-Ir surface modification, Kojiro Yagami, J. Appl. Phys., 89(2001)6609-6611.
35. Thermal stability of CoFe, Co and NiFe/Co spin valves, Alexander M. Zeltser, IEEE Trans. Magn. , 34(1998)1417-1419
36. The optimization of Ta buffer layer in magnetron sputtering IrMn top spinvalve, Thin Solid Films, Hua-Rui Liu, Tian-Ling Ren, Bin-Jun Qu, 441(2003)111–114
37. Exchange-biased spin-valves for magnetic storage, IEEE Trans. Magn. , J. C. S. Kools, 32(1996)3165-3184
38. Magnetotransport properties of magnetically soft spin-valve structures, B. Dieny, V.S. Sperious, S. Metin, S.S.P. Parkin, B.A. Gurney, P. Baumgart,D.R. Wilhoit, J. Appl. Phys. 69 (1991) 4774–4779.
39. Magnetoresistance effects of Fe-Mn/Ni-Fe-Co/(Au,Ag,Al)/Ni- Fe-Co sandwiches, Ryoichi NaKatani, Hiroyuki Hoshyia, Katsumi Hoshino, J. Appl. Phys. Vol.34, (1995)2312-2317.
40. Introduction to magnetism and magnetic recording, R. Lawrence Comstock, p.397