簡易檢索 / 詳目顯示

研究生: 張立酉
Chang, Li-Yu
論文名稱: 軟性液晶顯示器之結構分析及可靠度評估
Structural Analysis and Reliability Evaluation of Flexible Liquid Crystal Display Structure
指導教授: 葉孟考
Yeh, Meng-Kao
口試委員: 蔣長榮
Chiang, Chun-Ron
張禎元
Chang, Jen-Yuan (James)
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 89
中文關鍵詞: 軟性液晶觸控顯示器有限單元法三點彎曲降伏破壞三點彎曲實驗
外文關鍵詞: Flexible LCD Touch Display, Finite Element Analysis, Three Point Bending, Yielding Failure, Three Point Bending Experiment
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來科技產品日新月異,「能夠更有效地提高科技產品攜帶之便利性」成為了影響元件製造研發上重要的考量。而軟性液晶觸控顯示器因為其結構具有較輕薄、可彎曲等特性在未來各種科技產品不斷追求重量輕、厚度薄、體積小等特質下具有一定的競爭力。本研究著重於軟性液晶觸控顯示器中的液晶顯示結構,在結構受到三點彎曲時之結構分析與可靠度評估。本研究利用有限單元分析軟體ANSYS®,對液晶顯示層當中之PET/ITO/AAO及包含液晶之疊層結構進行三點彎曲模擬分析以及材料受外力後產生降伏破壞等分析。實驗方面透過Instron 8800材料試驗機進行PET/ITO疊層結構試片之三點彎曲實驗,並將實驗結果與模擬結果相互比較分析。
      根據研究成果,經三點彎曲分析後結構中ITO層為其中最先達到降伏之材料,而具奈米孔洞多孔性陽極氧化鋁AAO受彎曲行為下,孔洞內側有應力集中現象,實驗部分之PET/ITO疊層結構其三點彎曲之破壞應力值為87.84 MPa。本研究之成果可做為軟性液晶觸控顯示器開發上相關研究之參考。


    With the technology changing rapidly in recent year, the need “to increase the convenience of carrying the high-tech products” has become more and more important in devices producing. The characteristics of light, thin and bendable Flexible LCD Touch Display, make it more competitive on its market in the future. This study focused on the structural analysis and reliability evaluation of the Flexible LCD Display under three point bending. The simulation of PET/ITO/AAO laminate and LCD structure under three point bending, and then failure analyses are presented in this study by the finite element analysis using software ANSYS®. The experiment on the PET/ITO laminate under three point bending were performed using the material testing machine-Instron 8800, and the experiment of result are compared with the results from the simulation.
    According to this study, the ITO will be yielded first during the analysis of PET/ITO/AAO laminate under three point bending. The AAO have stress concentration on the inner side of the hole after bending. The failure stress of PET/ITO laminate is about 87.84 MPa from three point bending experiment. And the results this research can be used as a reference in the development of the Flexible LCD Touch Display.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 IX 第一章 緒論 1 1.1研究背景 1 1.2文獻回顧 1 1.2.1 ITO與PET之可靠度分析與測試 1 1.2.2軟性顯示器結構可靠度分析測試與實驗 3 1.2.3 材料破壞準則分析與應用 5 1.3研究主題 6 第二章 有限單元分析 7 2.1 PET/ITO/AAO疊層結構之三點彎曲分析 7 2.1.1 有限單元理論 8 2.1.2 有限單元模型建立與網格化 9 2.1.3 邊界條件與施加負載設定 10 2.2 陽極氧化鋁子模型之彎曲分析 10 2.2.1 子模型法理論 10 2.2.2 有限單元模型建立與網格化 11 2.2.3 邊界條件與施加負載設定 12 2.3 材料降伏破壞準則分析 13 2.3.1 降伏破壞準則理論 13 2.3.2 有限單元軟體之降伏破壞準則分析 15 2.4 含液晶之完整疊層結構三點彎曲分析 16 2.4.1有限單元模型建立與網格化 16 2.4.2邊界條件與施加負載設定 16 2.5 軟性液晶觸控顯示器三點彎曲分析 17 2.5.1 軟性液晶觸控顯示器介紹 17 2.5.2 有限單元模型建立與網格化 18 2.5.3 邊界條件與施加負載設定 18 第三章 實驗方法 20 3.1 顯示器結構彎曲實驗 20 3.1.1 材料試驗機原理 20 3.1.2 三點彎曲實驗原理 20 3.1.3 實驗流程與操作方法 21 3.1.4 實驗對照組之模擬分析 22 第四章 模擬與實驗結果 23 4.1 三點彎曲實驗結果 23 4.1.1 三點彎曲實驗結果 23 4.1.2 實驗對照組有限單元網格數測試 23 4.1.3 實驗對照組有限單元模擬分析 24 4.1.4 實驗結果與模擬結果比較 24 4.2 PET/ITO/AAO疊層結構之三點彎曲分析結果 25 4.2.1 PET/ITO/AAO疊層結構模型之網格數測試 25 4.2.2 PET/ITO/AAO疊層結構模擬結果之應力分析 25 4.3 PET/ITO/AAO疊層結構降伏準則分析結果 27 4.3.1 等效全域模型三點彎曲降伏準則分析 27 4.3.2 施力方向影響模擬結果之分析 28 4.3.3 疊層結構尺寸影響模擬結果之分析 29 4.4 陽極氧化鋁子模型三點彎曲降伏準則分析結果 29 4.4.1 陽極氧化鋁子模型網格分割方法測試 29 4.4.2 等效全域模型與子模型模擬結果之關係 30 4.4.3陽極氧化鋁子模型模擬結果之應力分析 31 4.5含液晶之完整疊層結構三點彎曲分析結果 32 4.5.1 液晶結構層之楊氏模數測試分析 32 4.5.2 含液晶之完整疊層結構三點彎曲模擬分析 33 4.5.3 含液晶之完整疊層結構三點彎曲降伏準則分析 34 4.6 軟性液晶觸控顯示器三點彎曲分析結果 35 4.6.1 軟性液晶觸控顯示器三點彎曲模擬分析 35 4.6.2 軟性液晶觸控顯示器子模型降伏準則分析 36 第五章 結論 37 參考文獻 38 圖表 44

    1. C. Hong, T. T. Tang, R. P. Pan and W. Fang, “Nanoporous Anodic Aluminum Oxide (Np-Aao) Alignment Layer On Pet/Ito Substrate For Flexible Liquid Crystal Display Application,” Micro Electro Mechanical Systems (MEMS), 2011 IEEE 24th International Conference, pp. 107-110, 2011.
    2. B. Sim, E. H. Kim, J. Park and M. Lee, “Highly Enhanced Mechanical Stability of Indium Tin Oxide Film with a Thin Al Buffer Layer Deposited on Plastic Substrate,” Surface & Coatings Technology, Vol. 204, pp. 309-312, 2009.
    3. Z. Yu, L. Xiang, W. Xue and H. Wang, “The Bending Properties of Flexible ITO Films,” IEEE Conference, pp. 148-150, 2007.
    4. S. K. Lee and J. U. Lee, ”The Fracture Distribution in ITO Coating with Compressive Bending Stress on Polymer Substrates,” Transactions on Electrical and Electronic Materials, Vol. 4, No. 6, pp. 5-8, 2003.
    5. K. Alzoubi, M. M. Hamasha, S. Lu and B. S. Sammakia, ”Bending Fatigue Study of Sputtered ITO on Flexible Substrate,” Journal of Display Technology, Vol.7, No. 11, pp. 593-600, 2011.
    6. Y. F. Lan, W. C. Peng, Y. H. Lo and J. L. He, ”Durability Under Mechanical bending of the Indium Tin Oxide Films Deposited on Polymer Substrate by Thermionically Enhanced Sputtering,” Organic Electronics, Vol. 11, pp. 670-676, 2010.
    7. J. S. Oh, Y. R. Cho, K. E. Cheon, Md. A. Karim, S. J. Jung, “Failure Mechanism of Patterned ITO Electrodes on Flexible Substrate under Static and Dynamic Mechanical Stresses,” Solid State Phenomena, Vol. 124-126, pp. 411-414, 2007.
    8. K. A. Sierros, N. J. Morris, K. Ramji, D. R. Carins, “Stress–corrosion Cracking of Indium Tin Oxide Coated Polyethylene Terephthalate for Flexible Optoelectronic Devices,” Thin Solid Film, Vol. 517, pp. 2590-2595, 2009.
    9. D. R. Caims, D. C. Paine, G. P. Carwford, “The Mechanical Reliability of Sputter-Coated Indium Tin Oxide Polyester Substrates for Flexible Display and Touchscreen Applications,” MRS Proceeding, Vol. 666, 2001.
    10. K. A. Sierros, N. J. Morris, S. N. Kukureka, D. R. Cairns, “Dry and Wet Sliding Wear of ITO-coated PET Components Used in Flexible Optoelectronic Applications,” Wear, Vol. 267, pp. 625-631, 2009.
    11. Y. Leterrier, C. Fischer, L. Médico, F. Demarco, J. A. E. Månson, P. Bouten, J. DeGoede, J.A. Nairn, “Mechanical Properties of Transparent Functional Thin Films for Flexible Displays,” 46th Annual Technical Conference Proceedings, 2003.
    12. J. P. Li, P. Yang and J. Zhong, “Thermal Analysis Based on the Environmental Tests of STN Display,” EuroSimE IEEE Conference, 2009.
    13. S. Grego, J. Lewis, E. Vick and D. Temple, “Development and Evaluation of Bend-Testing Techniques for Flexible-Display Applications,” Journal of the SID, Vol. 13, No. 7, pp. 575-581, 2005.
    14. Q. Chen, L. Xu, C. Jing, T. Xue and A. Salo, ”Flexible Device and Component Reliability Study Using Simulations,” EuroSimE IEEE Conference, 2008.
    15. Q. Chen, L. Xu and A. Salo, ” Reliability Study of Flexible Display Module by Experiments,” ICEPT-HDP IEEE, 2008.
    16. M. H. Lee, K. Y. Ho, P. C. Chen, C. C. Cheng, S. T. Chang, M. Tang, M. H. Liao and Y. H. Yeh, “Promising a-Si:H TFTs with High Mechanical Reliability for Flexible Display,” IEDM Technical Digest, pp. 299-232, 2006.
    17. Q. Chen, L. Xu and A. Salo, “Reliability of Flexible Display by Simulation and Strain Gauge Test,” 10th Electronics Packaging Technology Conference, 2008.
    18. J. Lewis, S. Grego, E. Vick, B. Chalamala, D. Temple, “Mechanical Performance of Thin Films in Flexible Displays,” MRS Proceeding, Vol. 814, 2004.
    19. G. P. Crawford, Flexible Flat Panel Displays, John Wiley & Sons, Ltd., 2005.
    20. J. W. Jung, S. K. Park, S. B. Kwon, J. H. Kim, “Pixel-Isolated Liquid Crystal Mode for Flexible Display Applications,” Japanese Journal of Applied Physics, Vol. 43, No. 7A, pp. 4269-4272, 2004.
    21. S. Grego, J. Lewis, E. Vick, D. Temple, “A Method to Evaluate Mechanical Performance of Thin Transparent Films for Flexible Displays,” Thin Solid Films, Vol. 515, pp. 4745-4752, 2007.
    22. K. Kiziloglu, S. Thomas III, F. Williams, Jr. B. M. Paine, “Reliability and Failure Criteria for AlInAs/GaInAs/InP HBTs,” IEEE conference, pp. 294-297, 2000.
    23. F. Barlat, J. C. Yoon, K. Chung, R. E. Dick, D. J. Lega, F. Pourboghrat, S. H. Choi, E. Chu, “Plane Stress Yield Function for Aluminum Alloy Sheets—Part 1: Ttheory,” International Journal of Plasticity, Vol. 19, pp. 1297-1319, 2003.
    24. J. W. Yoon, F. Barlat, R. E. Dick, K. Chung, T. J. Kang, “Plane Stress Yield Function for Aluminum Alloy Sheets—Part II: FE Formulation and its Implementation,” International Journal of Plasticity, Vol. 20, pp. 495-522, 2004.
    25. H. Noori, R. Mahmudi, “Prediction of Forming Limit Diagrams in Sheet Metals Using Different Yield Criteria,” The Minerals, Metals & Materials Society and ASM International, Vol. 38A, pp. 2040-2052, 2007.
    26. H. N. Han, J. E. Lee, T. J. Yeo, Y. M. Won, K. H. Kim, K. H. Oh, J. K. Yoon, “A Finite Element Model for 2-Dimension Slice of Cast Strand,” ISIJ International, Vol. 39, No. 5, pp. 445-454, 1999.
    27. T. N. Goh, Y. Tang, “A General Weibull Model for Reliability Analysis Under Different Failure Criteria—Application on Anisotropic Conductive Adhesive Joining Technology,” IEEE Transactions on Electronics Packaging Manufacturing, Vol. 28, No. 4, pp. 322-327, 2005.
    28. R. M. Christensen, “A Comprehensive Theory of Yielding and Failure for Isotropic Materials,” Journal of Engineering Materials and Technology, 2006.
    29. Z. H. Chen, Q. Zhang, K. Wang, X. B. Luo, S. Liu, “Reliability Test and Failure Analysis of High Power LED Packages,“ Journal of Semiconductors, Vol. 32, No. 1, pp. 1-4, 2011.
    30. S. Math, V. Jayaram, S. K. Biswas, “Deformation and Failure of a Film/Substrate System Subjected to Spherical Indentation: Part I. Experimental Validation of Stresses and Strains Derived Using Hankel Transform Technique in an Elastic Film/Substrate System,” Journal of Materials Research, Vol. 21, pp. 774-782, 2006.
    31. S. Math, V. Jayaram, S. K. Biswas, “Deformation and Failure of a Film/Substrate System Subjected to Spherical Indentation: Part II. Prediction of Failure Modes in a Thin TiN Film Deposited on a Compliant Elastic Substrate,” Journal of Materials Research, Vol. 21, pp. 783-790, 2006.
    32. ANSYS Release 12.1, ANSYS, Inc., PA, 2010.
    33. R. D. Cook, D. S. Malkus, M. E. Plesha and R. J. Witt, Concepts and Applications of Finite Element Analysis, 4th ed., John Wiley & Sons, Inc., Danvers, 2002.
    34. L. J. Segerlind, Applied Finite Element Analysis, 2nd ed., Wiley, New York, 1984.
    35. ANSYS User’s Manual, ANSYS Inc.
    36. 康淵,陳信吉,ANSYS入門,全華科技圖書股份有限公司,台北,2003。
    37. R. F. Gibson, Principles of Composite Material Mechanics, McGraw-Hill, New York, 2007.
    38. C. J. Chiang, “The Electrical and Mechanical Study of the Flexible Organic Light Emitting Diodes,” Doctoral thesis, Durham University, 2011.
    39. D.G. Neerinck , T.J. Vink, “ Depth Profiling of Thin ITO Films by Grazing Incidence X-ray Diffraction ”, The Solid Films, 1995.
    40. D. K. Shukla, V. Parameswaran,“ Epoxy Composites With 200 nm Thick Alumina Platelets as Reinforcements”, Journal of Materials Science, 2007.
    41. P. I. Vincent, “A Correlation Between Critical Tensile Strength and Polymer Cross-Sectional Area,” Polymer, Vol. 13, 1972.
    42. P. C. P. Bouten, P. J. Slikkerveer, Y. Leterrier, ”Mechanics of ITO on Plastic Substrates for Flexible Displays,” Flexible Flat Panel Displays, ed. G.P. Crawford , John Wiley & Sons, New York, pp. 99–120, 2005.
    43. J. C. Barbour, J. A. Knapp, D. M. Follstaedt, T. M. Mayer, K. G. Minor, D. L. Linam, “The Mechanical Properties of Alumina Films Formed by Plasma Deposition and by Ion Irradiation of Sapphire,” Nuclear Instruments and Methods in Physics Research B, No. 166-167, pp. 140-147, 2000.
    44. W. Lee, R. Ji, U. Gosele and K. Nielsch, “Fast Fabrication of Long-Range Ordered Porous Alumina Membranes by Hard Anodization,” Nature Materials, Vol. 5, pp. 741-747, 2006.
    45. S. H. Ko, D. W. Lee, S. E. Jee, H. C. Park, K. H. Lee and W. Hwang, ” Mechanical Properties and Residual Stress Measurements in Anodic Aluminum Oxide Structures Using Nanoindentation,” Glass Physics and Chemistry, Vol. 31, Issue 3, pp. 356-363, 2005.
    46. 葉孟考、宋法欣,“奈米多孔性陽極氧化鋁隨孔隙率變化之機械性質分析”,中華民國力學學會第三十五屆全國力學會議,2011。
    47. J. M. Gere, B. J. Goodno, Mechanics of Materials, 7th ed., Cengage Learning, 2009.
    48. 宋法欣,具奈米多孔性陽極氧化鋁之軟性液晶顯示結構振動與熱應力分析,國立清華大學動力機械工程研究所碩士論文,2012。
    49. D. K. Shukla and V. Parameswaran, “Epoxy Composites with 200 nm Thick Alumina Platelets as Reinforcements,” Journal of Materials Science, Vol. 42, Issue 15, pp. 5964-5972, 2007.
    50. A. C. Ugural, S. K. Fenster, Advanced Strength and Applied Elasticity, 4th ed., Prentice Hall, 2004.
    51. ASTM D790-10, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, 2010.
    52. F. Mujika, “On the Difference Between Flexural Moduli Obtained by Three-Point and Four-Point Bending Tests,” Polymer Testing, Vol. 25, pp. 214-220, 2006.
    53. L. D. Lillwitz, “Production of Dimethyl-2,6-Naphthalenedicarboxylate: Precursor to Polyethylene Naphthalate,” Applied Catalysis A, Vol. 221, pp. 337-358, 2001.
    54. F. Y. Tsai, Y. H. Kuo, D. R. Harding, “Properties and Structure of Vapor-Deposited Polyimide Upon Electron-Beam Irradiation,” Journal of Applied Physics, Vol. 99, 2006.
    55. V.K. Pamula, A. Jog, R.B. Fair, “Mechanical Property Measurement of Thin-film Gold Using Thermally Actuated Bimetallic Cantilever Beams,” Nanotech, Vol. 1, pp. 410-413, 2001.
    56. J. C. Lotters, W. Olthuis, P. H. Veltink, P. Bergveld, “The Mechanical Properties of The Rubber Elastic Polymer Polydimethylsiloxane for Sensor Applications,” Journal of Micromechanics and Microengineering, Vol. 7, pp. 145-147, 1997.
    57. P. G. Sanders1, J. A. Eastman, J. R. Weertman, “Elastic and Tensile Behavior of Nanocrystalline Copper and Palladium,” Acta Materialia, Vol. 45, pp. 4019-4025, 1997
    58. A. Eremin, A. Nemes, R. Stannarius, M. Schulz, H. Nádasi, W. Weissflog, “Structure and Mechanical Properties of Liquid Crystalline Filaments,” Physical Review, Vol. 71, pp. 1-5, 2005.
    59. A. S. Ferrer, H. Finkelmann, “Thermal and Mechanical Properties of NewMain-Chain Liquid-Crystalline Elastomers,” Solid State Sciences, Vol. 12, pp. 1849-1852, 2010.
    60. R. D. Maksimov, T. Sterzynski, “Mechanical Properties of Blends of Liquid Crystalline Copolyesters with Polyprophylene,” Mechanics of Composite Materials, Vol. 30, No. 4, pp. 318-324, 1994.
    61. K. Timpano, “Mechanical Characterization of Gold Thin Films for RF-MEMS,” University of Virginia, 2005.
    62. Y. W. Yu, F. Spaepena, “The Yield Strength of Thin Copper Films on Kapton,” Journal of Applied Physics, Vol. 95, No. 6, pp2991-2996, 2004.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE