研究生: |
黃建荺 Huang, Chien-Yun |
---|---|
論文名稱: |
共摻雜鐵、鈷、鎂來改善磷酸鋰錳作為鋰離子電池陰極材料的電化學表現 Improved Electrochemical Performance of LiMnPO4 as Cathode Material for Li Ion Battery by co-doping Fe-Co-Mg |
指導教授: |
蔡哲正
Tsai, Cho-Jen |
口試委員: |
林居南
Lin, Jiu-Nan 陳翰儀 Chen, Han-Yi |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 47 |
中文關鍵詞: | 鋰離子電池 、磷酸鋰錳 、共摻雜 |
外文關鍵詞: | LiMnPO4, co-doping, Li-ion battery |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究嘗試在水熱法合成的磷酸鋰錳中共摻雜鐵-鈷-鎂,以改變Li-O鍵結能和創造鋰缺陷,來使鋰離子傳導性更好。實驗結果為共摻雜鐵-鈷-鎂在高速率充放電有最好的表現,甚至比共摻雜鐵-鈷或鐵-鎂還要更好。XPS結果也顯示共摻雜鐵-鈷-鎂有最強的Mn-O和P-O鍵,因此Li-O鍵會相對變弱,鋰離子就能更快的嵌入脫出。至於循環壽命則是依據摻雜的鎂和鈷之比例而有不同的表現,共摻雜鐵-鈷有最高的電容量,而隨著鎂的量越多,電容量逐漸下降,因此共摻雜鐵-鎂的電容量為最低。不過穩定性的趨勢卻是相反的,隨著鎂的量越多,電容量的衰退幅度越小。綜合來說,共摻雜鐵-鈷-鎂在高速率充放電的協同作用比摻雜鐵-鈷和鐵-鎂還要明顯,而在0.5 C的循環壽命表現則與鈷/鎂的比例有關。
In this study, we synthesize lithium manganese phosphate co-doped Fe-Co-Mg by solvothermal method. Co-doping Fe-Co-Mg can change the binding energy and create Li vacancy, so lithium ions insert and extract faster. We also discuss co-doping effect of three conditions: Fe-Co, Fe-Mg and Fe-Co-Mg. The result shows that the cases of co-doping Fe-Co-Mg have better rate capability than the case of co-doping Fe-Co and Fe-Mg. According to XPS results, the cases of co-doping Fe-Co-Mg have stronger Mn-O bonds and P-O bonds than that of co-doping Fe-Co and Fe-Mg. It causes Li-O bonds become weaker, so lithium ions can insert/extract faster. As for cycle life, the case of co-doping Fe-Co has the highest initial capacity. The initial capacity decreases depending on the amount of Mg. The decrease of the initial capacity depends on the amount of Mg. Doping more Mg and less Co decrease the initial capacity. However, the trend of stability of cycle life is opposite. The cycle life decays more slowly with increasing amount of Mg doped.
To sum up, co-doping three elements shows more significant synergistic effect about rate capability than co-doping two elements does.
1.https://www.zmescience.com/science/news-science/co2-mid-century-unprecedented/
2.https://trilliantinc.com/smart-grid
3.https://www.extremetech.com/tag/tesla-model-s
4.http://kirillklip.blogspot.com/2015/02/lithium-batteries-with-200-typical.html
5.Christian M. Julien, et al. (2014). "Comparative Issues of Cathode Materials for Li-Ion Batteries." Inorganics 2:132-154
6.Hautier, G., et al. (2011). "Phosphates as Lithium-Ion Battery Cathodes: An Evaluation Based on High-Throughputab InitioCalculations." Chemistry of Materials 23(15): 3495-3508.
7.Seo, D.-H., et al. (2010). "Multicomponent Olivine Cathode for Lithium Rechargeable Batteries: A First-Principles Study." Chemistry of Materials 22(2): 518-523.
8.Hong, Y., et al. (2015). "High-performance LiMnPO4 nanorods synthesized via a facile EG-assisted solvothermal approach." Journal of Materials Chemistry A 3(19): 10267-10274.
9.Bao, L., et al. (2016). "Olivine LiFePO 4 nanocrystallites embedded in carbon-coating matrix for high power Li-ion batteries." Electrochimica Acta 222: 685-692.
10.Hong, Y., et al. (2016). "Controllable synthesis of LiMnPO 4 nanocrystals: Morphology evolution and their size-dependent electrochemical properties." Ceramics International 42(7): 8769-8778.
11.Ramar, V. and P. Balaya (2013). "Enhancing the electrochemical kinetics of high voltage olivine LiMnPO4 by isovalent co-doping." Phys Chem Chem Phys 15(40): 17240-17249.
12.Huang, Q.-Y., et al. (2016). "Synthesis and electrochemical performance of Ti–Fe co-doped LiMnPO4/C as cathode material for lithium-ion batteries." Ceramics International 42(9): 11348-11354.
13.Xiao, P., et al. (2017). "Improved electrochemical performance of LiFe0.4Mn0.6PO4/C with Cr3+ doping." RSC Advances 7(50): 31558-31566.
14.Wang, Y., et al. (2017). "Facile and controllable one-pot synthesis of nickel-doped LiMn0.8Fe0.2PO4 nanosheets as high performance cathode materials for lithium-ion batteries." Journal of Materials Chemistry A 5(35): 18674-18683.
15.Wei Xiang, et al. (2015). "Improving the electrochemical kinetics of lithium manganese phosphate via co-substitution with iron and cobalt." Journal of Alloys and Compounds 635 : 180–187
16.T. Muraliganth, et al. (2010). "Understanding the Shifts in the Redox Potentials of Olivine LiM1-yMyPO4 (M ) Fe, Mn,Co, and Mg) Solid Solution Cathodes." J. Phys. Chem. C, 114 : 15530–15540