簡易檢索 / 詳目顯示

研究生: 黃柏樺
Huang, Po-Hua
論文名稱: 中空陰極放電離子覆膜製備之摻氮氧化鋯薄膜其相變化與防蝕性研究
The Phase Transition and Corrosion Resistance of N-doped ZrO2 Thin Films Deposited by HCD-IP
指導教授: 黃嘉宏
Huang, Jia-Hong
喻冀平
Yu, Ge-Ping
口試委員: 呂福興
周振嘉
黃嘉宏
喻冀平
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 165
中文關鍵詞: 離子覆膜摻氮氧化鋯薄膜抗腐蝕性相變化氧化鋯薄膜
外文關鍵詞: Ion-plating, N-doped ZrO2 thin film, Corrosion resistance, Phase transition, Zirconia thin film
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用中空陰極放電離子覆膜系統沉積摻氮之氧化鋯薄膜,並分別鍍著於Si基材及AISI 304不鏽鋼基材。鍍膜過程中固定氧氣流量在10 sccm,並控制氮氣流量從0 sccm增加至12 sccm以產生不同含氮量及結晶相比例的摻氮之氧化鋯薄膜。利用X光光電子能譜以及X光繞射圖確認薄膜中成分以及結晶相比例。結果顯示,隨著氧化鋯薄膜中含氮量增加,X光繞射圖顯示m-ZrO2逐漸減少,而c-ZrO2隨之增加;當氧化鋯薄膜中含氮量高於固溶限時,將會產生ZrN,其中氮的固溶限在不鏽鋼基材與Si基材分別是8.8 at%與8.3 at%。試片經真空熱處理後,發現鍍著於不同基材上摻氮之氧化鋯薄膜產生不同的相變化。在含氮量較高的不鏽鋼系列試片中發現,c-ZrO2發生相分離並產生較多ZrN,但在Si基材試片中的c-ZrO2卻直接轉變為Zr2ON2。深入研究基材對於相變化的影響後,發現摻入的氮扮演重要角色。不同相變化也連帶影響到試片顏色以及成分的均勻性。對於鍍著摻氮氧化鋯薄膜之不鏽鋼試片,使用動態極化掃描分別在鹽水(5% NaCl)與硫酸(1N H2SO4)中測試其抗腐蝕能力,並利用鹽霧測試來檢驗鍍層對於鹽霧的耐受性。結果顯示抗腐蝕能力主要受到薄膜堆積密度以及主要結晶相的影響,同時發現摻氮之氧化鋯薄膜伴隨著適量的ZrN,有較優良的抗腐蝕能力及鹽霧耐受性。其中含有14.4 % ZrN的摻氮之氧化鋯薄膜在抗腐蝕能力上展現絕佳的熱穩定性,在熱處理前後都維持著極佳的抗腐蝕性。在腐蝕測試之後,薄膜並沒有發生脫落現象,因此中空陰極放電離子覆膜製程可以用於克服表面潤濕性障礙並顯著提升氧化鋯薄膜在不鏽鋼基材的附著性。


    N-doped ZrO2 thin films were deposited respectively on Si (Si-series) and 304 stainless steel (SS-series) substrates using hallow cathode discharge ion-planting (HCD-IP). The objectives of the present study were to understand the effect of substrate materials on phase transition and to provide a feasible approach to manufacture N-doped ZrO2 coatings with excellent corrosion resistance and good adhesion. By maintaining oxygen flow rate at 10 sccm and adjusting nitrogen flow rate, ranging from 0 to 12 sccm, the compositions and phase ratios of the N-doped ZrO2 thin films can be controlled. With increasing nitrogen flow rate, the XRD patterns showed that the phase content of c-ZrO2 increased while that of m-ZrO2 decreased, and then ZrN phase increased. The N solubility limit in ZrO2 for the formation of ZrN was 8.8 and 8.3 at% for the as-deposited thin film on SS and Si, respectively. After annealing in vacuum, different phase transitions were found for the specimens of different substrates. At higher nitrogen content, phase separation of ZrN from c-ZrO2 occurred in the SS-series specimens, while the main phase transformed from c-ZrO2 into Zr2ON2 in the Si-series specimens. The difference in defects between SSAD and SiAD-series specimens may be derived from the substrate effect, leading to different phase transitions after annealing. The corrosion resistance of SS-series specimens was evaluated by potentiodynamic scan in both 5% NaCl and in 1N H2SO4 solutions, and salt spray test was employed to access the durability of the films. Corrosion resistance was associated with film packing density and major phases. The HCD-IP method can effectively overcome the surface wetting problem of ZrO2 on stainless steel, and hence N-doped ZrO2 coating on stainless steel possesses excellent adhesion and corrosion resistance. N-doped ZrO2 thin films containing from 14.4 % to 28.8 % ZrN were found to have better corrosion resistance than pure ZrO2 thin films.

    Content 致謝………………………………………………………………………i 摘要……………………………………………………………………iii Abstract………………………………………………………………iv Content…………………………………………………………………v List of Figures……………………………………………………viii List of Tables………………………………………………………xiv Chapter 1 Introduction………………………………………………1 Chapter 2 Literature Review………………………………………3 2.1 Deposition Method: Hollow Cathode Discharge Ion-Plating (HCD-IP) System…………………………………………………………3 2.2 The Characteristics of Zr(N,O)…………………………………………………………………6 2.2.1 ZrO2……………………………………………………………….6 2.2.2 Zirconium Oxynitride………………………………………………………………11 2.2.3 ZrN………………………………………………………………15 2.3 The Effect of Oxygen Vacancies on High Temperature Polymorphs of ZrO2…………………………………………………17 2.3.1 The Stabilization Mechanisms………………………………17 2.3.2 The Approaches to Stabilize High Temperature Polymorphs of ZrO2…………………………………………………19 2.4 Recent Studies of Zr(N,O) Thin Films………………………21 2.5 The Corrosion Resistance of Zr(N,O) Thin Films…………24 Chapter 3 Experimental details…………………………………27 3.1 Specimen Preparation and Coating Process…………………27 3.2 Vacuum Heat Treatment………………………………………………………………29 3.3 Characterization Methods………………………………………32 3.3.1 X-ray Photoelectron Spectroscopy (XPS)…………………32 3.3.2 Auger Electron Spectroscopy (AES)………………………34 3.3.3 Rutherford Backscattering Spectroscopy (RBS)…………34 3.3.4 X-ray Diffraction (XRD)……………………………………35 3.3.4.1 θ/2θ Scan…………………………………………………35 3.3.4.2 Grazing Incident X-ray Diffraction (GIXRD)…………36 3.3.5 Field Emission Scanning Electron Microscopy (FEG-SEM)………………………………………………………………37 3.4 Properties Measurements………………………………………37 3.4.1 Hardness and Young’s Modulus……………………………37 3.4.2 Residual Stress………………………………………………38 3.4.2.1 Laser Curvature Method……………………………………39 3.4.2.2 XRD cos2αsin2ψ Method…………………………………39 3.4.3 Contact Angle and Surface Energy…………………………42 3.4.4 Corrosion Resistance…………………………………………45 3.4.4.1 Potentiodynamic Polarization Scan……………………45 3.4.4.2 Salt Spray Test……………………………………………48 3.4.5 Coloration………………………………………………………50 Chapter 4 Results……………………………………………………52 4.1 Chemical Compositions…………………………………………58 4.1.1 XPS………………………………………………………………58 4.1.2 AES………………………………………………………………66 4.1.3 RBS………………………………………………………………71 4.2 Structure…………………………………………………………73 4.2.1 XRD and GIXRD…………………………………………………73 4.2.2 SEM………………………………………………………………88 4.3 Properties…………………………………………………………93 4.3.1 Contact Angle and Wettability……………………………93 4.3.2 Residual Stress………………………………………………95 4.3.3 Hardness ………………………………………………………97 4.3.4 Corrosion Resistance…………………………………………99 4.3.4.1 Potentiodynamic Polarization Scan……………………99 A. 1N H2SO4 + 0.05 M KSCN…………………………………………99 B. 5% NaCl……………………………………………………………104 4.3.4.2 Salt Spray Test……………………………………………109 4.3.5 Coloration……………………………………………………111 Chapter 5 Discussion……………………………………………114 5.1 Phase Formation during Deposition…………………………114 5.2 Phase Transformation after Heat Treatment………………123 5.3 Adhesion and Surface Energy…………………………………132 5.4 Corrosion Resistance…………………………………………133 Chapter 6 Conclusions……………………………………………138 References……………………………………………………………139 Appendix A……………………………………………………………150 Appendix B……………………………………………………………154 Appendix C……………………………………………………………163

    [1] P. Carvalho, F. Vaz, L. Rebouta, L. Cunha, C.J. Tavares, C. Moura, E. Alves, A. Cavaleiro, P. Goudeau, E. Le Bourhis, J.P. Riviere, J.F. Pierson, O. Banakh, J. Appl. Phys., 98 (2005) 023715.
    [2] C.S. Hwang, H.J. Kima, J. Mater. Res., 8 (1993) 1361.
    [3] S. Venkataraj, O. Kappertz, H. Weis, R. Drese, R. Jayavel, M. Wuttig, J. Appl. Phys., 92 (2002) 3599.
    [4] D. Lee, H. Choi, H. Sim, D. Choi, H. Hwang, M.-J. Lee, S.-A. Seo, I.K. Yoo, IEEE Elec. Dev. Lett., 26 (2005) 719.
    [5] J.-H. Huang, K.-H. Chang, G.-P. Yu, Surf. Coat. Technol., 201 (2007) 6404.
    [6] J.-H. Huang, Z.-E. Tsai, G.-P. Yu, Surf. Coat. Technol., 202 (2008) 4992.
    [7] J.-S. Lee, M. Lerch, J. Maier, J. Solid State Chem., 179 (2006) 270.
    [8] T. Mishima, M. Matsuda, M. Miyake, Appl. Catal., A, 324 (2007) 77.
    [9] Y. Maekawa, A. Ishihara, J.-H. Kim, S. Mitsushima, K.-i. Ota, Electrochem. Solid-State Lett., 11 (2008) B109.
    [10] M. Atik, M.A. Aegerter, J. Non-Cryst. Solids, 147-148 (1992) 813.
    [11] S.C. Ferreira, E. Ariza, L.A. Rocha, J.R. Gomes, P. Carvalho, F. Vaz, A.C. Fernandes, L. Rebouta, L. Cunha, E. Alves, P. Goudeau, J.P. Riviere, Surf. Coat. Technol., 200 (2006) 6634.
    [12] W. Qin, C. Nam, H.L. Li, J.A. Szpunar, Acta Mater., 55 (2007) 1695.
    [13] A. Rizzo, M.A. Signore, L. Mirenghi, A. Cappello, L. Tapfer, Surf. Coat. Technol., 204 (2010) 2019.
    [14] M.A. Signore, A. Rizzo, L. Tapfer, E. Piscopiello, L. Capodieci, A. Cappello, Thin Solid Films, 518 (2010) 1943.
    [15] J.-H. Huang, T.-C. Lin, G.-P. Yu, Surf. Coat. Technol., (accepted) (2011).
    [16] J.-H. Huang, Y.-Y. Hu, G.-P. Yu, Surf. Coat. Technol., 205 (2011) 5093.
    [17] S.-C. Wang, Post-annealing induced phase transformation and phase separation of Zr(O,N) thin films, Master Thesis, National Tsing Hua University, R.O.C., 2008.
    [18] J.-H. Huang, T.-H. Wu, G.-P. Yu, Surf. Coat. Technol., 203 (2009) 3491.
    [19] E. Ariza, L.A. Rocha, F. Vaz, L. Cunha, S.C. Ferreira, P. Carvalho, L. Rebouta, E. Alves, P. Goudeau, J.P. Riviere, Thin Solid Films, 469-470 (2004) 274.
    [20] S. Ben Amor, B. Rogier, G. Baud, M. Jacquet, M. Nardin, Mater. Sci. Eng. B, 57 (1998) 28.
    [21] M. Boulouz, A. Boulouz, A. Giani, A. Boyer, Thin Solid Films, 323 (1998) 85.
    [22] L. Duc Huy, P. Laffez, P. Daniel, A. Jouanneaux, N. The Khoi, D. Simeone, Mater. Sci. Eng. B, 104 (2003) 163.
    [23] P. Gao, L.J. Meng, M.P. dos Santos, V. Teixeira, M. Andritschky, Vacuum, 64 (2002) 267.
    [24] Z. Ji, J.A. Haynes, E. Voelkl, J.M. Rigsbee, J. Am. Ceram. Soc., 84 (2001) 929.
    [25] K. Koski, J. Holsa, P. Juliet, Surf. Coat. Technol., 120-121 (1999) 303.
    [26] L. Fedrizzi, F.J. Rodriguez, S. Rossi, F. Deflorian, R. Di Maggio, Electrochim. Acta, 46 (2001) 3715.
    [27] F.L. Perdomo, P. De Lima-Neto, M.A. Aegerter, L.A. Avaca, J. Sol-Gel Sci. Technol., 15 (1999) 87.
    [28] I. Espitia-Cabrera, H. Orozco-Hernandez, R. Torres-Sanchez, M.E. Contreras-Garcia, P. Bartolo-Perez, L. Martinez, Mater. Lett., 58 (2004) 191.
    [29] P. Stefanov, D. Stoychev, M. Stoycheva, J. Ikonomov, T. Marinova, Surf. Interface Anal., 30 (2000) 628.
    [30] P. Stefanov, D. Stoychev, I. Valov, A. Kakanakova-Georgieva, T. Marinova, Mater. Chem. Phys., 65 (2000) 222.
    [31] R. Romero Pareja, R. Lopez Ibanez, F. Martin, J.R. Ramos-Barrado, D. Leinen, Surf. Coat. Technol., 200 (2006) 6606.
    [32] T. Koch, P. Ziemann, Thin Solid Films, 303 (1997) 122.
    [33] P.J. Martin, R.P. Netterfield, W. G. Sainty, J. Appl. Phys., 55 (1984) 235.
    [34] D.R. McKenzie, D.J.H. Cockayne, M.G. Sceats, P.J. Martin, W.G. Sainty, R.P. Netterfield, J. Mater. Sci., 22 (1987) 3725.
    [35] S.C. Moulzolf, Y. Yu, D.J. Frankel, R.J. Lad, J. Vac. Sci. Technol., A, 15 (1997) 1211.
    [36] R.A. Dugdale, J. Mater. Sci., 1 (1966) 160.
    [37] E. Ryshkewitz, D.W. Richardson, Oxide Ceramic : Physical Chemistry and Technology, 2nd ed., Academic Press, New York, 1985.
    [38] S. Meriani, C. Palmonari, Zirconia'88: Advances in Zirconia Science and Technology, 1st ed., Elsevier Publishing Company, New York, 1989.
    [39] H. Li, K. Liang, L. Mei, S. Gu, S. Wang, Mater. Lett., 51 (2001) 320.
    [40] A. Hidaka, J. Nakamura, J. Sugimoto, Nucl. Eng. Des., 168 (1997) 361.
    [41] F. Cernuschi, S. Ahmaniemi, P. Vuoristo, T. Mantyla, J. Eur. Ceram. Soc., 24 (2004) 2657.
    [42] S. Venkataraj, O. Kappertz, C. Liesch, R. Detemple, R. Jayavel, M. Wuttig, Vacuum, 75 (2004) 7.
    [43] P. De Lima Neto, M. Atik, L.A. Avaca, M.A. Aegerter, J. Sol-Gel Sci. Technol., 1 (1994) 177.
    [44] H. Hasuyama, Y. Shima, K. Baba, G.K. Wolf, H. Martin, F. Stippich, Nucl. Instrum. Methods Phys. Res., Sect. B, 127-128 (1997) 827.
    [45] J.P. Holgado, M. Perez-Sanchez, F. Yubero, J.P. Espinos, A.R. Gonzalez-Elipe, Surf. Coat. Technol., 151-152 (2002) 449.
    [46] T.-K. Yeh, Y.-C. Chien, B.-Y. Wang, C.-H. Tsai, Corros. Sci., 50 (2008) 2327.
    [47] B. Liang, C. Ding, Surf. Coat. Technol., 197 (2005) 185.
    [48] R.F. Geller, P.J. Yavorsky, J. Research Natl. Bur. Stand., 35 (1945) 87.
    [49] O.J. Whittemore, N.N. Ault, J. Am. Ceram. Soc., 39 (1956) 443.
    [50] Z.W. Zhao, B.K. Tay, G.Q. Yu, S.P. Lau, J. Phys.: Condens. Matter, 15 (2003) 7707.
    [51] Q. Zhang, J. Shen, J. Wang, G. Wu, L. Chen, Int. J. Inorg. Mater., 2 (2000) 319.
    [52] W.H. Lowdermilk, D. Milam, F. Rainer, Thin Solid Films, 73 (1980) 155.
    [53] W.T. Pawlewicz, D.D. Hays, P.M. Martin, Thin Solid Films, 73 (1980) 169.
    [54] Y. Ohtsu, M. Egami, H. Fujita, K. Yukimura, Surf. Coat. Technol., 196 (2005) 81.
    [55] E.C. Subbarao, in: A.H. Heuer, L.W. Hobbs (Eds.), Advances in ceramics, Vol 3: Science and Technology of Zirconia, American Ceramic Society, Westerville, 1981, pp. 1.
    [56] S.K. Rawal, A.K. Chawla, V. Chawla, R. Jayaganthan, R. Chandra, Mater. Sci. Eng., B 172 (2010) 259.
    [57] C. Piconi, G. Maccauro, Biomaterials, 20 (1999) 1.
    [58] C. Piconi, G. Maccauro, L. Pilloni, W. Burger, F. Muratori, H. Richter, J. Mater. Sci.: Mater. Med., 17 (2006) 289.
    [59] X.J. Chen, K.A. Khor, S.H. Chan, L.G. Yu, Mater. Sci. Eng., A 335 (2002) 246.
    [60] N.Q. Minh, J. Am. Ceram. Soc., 76 (1993) 563.
    [61] W.J. Fleming, SAE Papper, (1977) No. 770400.
    [62] J. Zhu, T.L. Li, B. Pan, L. Zhou, Z.G. Liu, J. Phys. D: Appl. Phys., 36 (2003) 389.
    [63] Y.K. Park, S.H. Lee, J.W. Lee, J.Y. Lee, S.H. Han, E.C. Lee, S.Y. Kim, J. Han, J.H. Sung, Y.J. Cho, J.Y. Jun, D.J. Lee, K.H. Kim, D.K. Kim, S.C. Yang, B.Y. Song, Y.S. Sung, H.S. Byun, W.S. Yang, K.H. Lee, S.H. Park, C.S. Hwang, T.Y. Chung, W.S. Lee, VLSI Tech. Dig., 10B-4 (2007) 190.
    [64] H.J. Cho, Y.D. Kim, D.S. Park, E. Lee, C.H. Park, J.S. Jang, K.B. Lee, H.W. Kim, Y.J. Ki, I.K. Han, Y.W. Song, Solid-State Electron., 51 (2007) 1529.
    [65] X. Wu, P. Zhou, J. Li, L. Y. Chen, H.B. Lv, Y.Y. Lin, T.A. Tang, Appl. Phys. Lett., 90 (2007) 183507.
    [66] W. Guan, S. Long, R. Jia, M. Liu, Appl. Phys. Lett., 91 (2007) 062111.
    [67] C.-Y. Lin, C.-Y. Wu, T.-C. Lee, F.-L. Yang, C. Hu, T.-Y. Tseng, IEEE Elec. Dev. Lett., 28 (2007) 366.
    [68] W.J. Qi, R. Nieh, B.H. Lee, L.G. Kang, Y. Jeon, J.C. Lee, Appl. Phys. Lett., 77 (2000) 3269.
    [69] J.P. Chang, Y.S. Lin, Appl. Phys. Lett., 79 (2001) 3666.
    [70] M. Copel, M. Gribelyuk, E. Gusev, Appl. Phys. Lett., 76 (2000) 436.
    [71] S.W. Nam, J.H. Yoo, H.Y. Kim, S.K. Kang, D.H. Ko, C.W. Yang, H.J. Lee, M.H. Cho, J.H. Ku, J. Vac. Sci. Technol., A, 19 (2001) 1720.
    [72] T.S. Jeon, J.M. White, D.L. Kwong, Appl. Phys. Lett., 78 (2001) 368.
    [73] J. Abriata, J. Garces, R. Versaci, J. Phase Equil., 7 (1986) 116.
    [74] K. Maca, H. Hadraba, J. Cihlar, Ceram. Int., 30 (2004) 843.
    [75] A. Emeline, G.V. Kataeva, A.S. Litke, A.V. Rudakova, V.K. Ryabchuk, N. Serpone, Langmuir, 14 (1998) 501.
    [76] M. Ghanashyam Krishna, K. Narasimha Rao, S. Mohan, Thin Solid Films, 193-194 (1990) 690.
    [77] W.W. Davison, R.C. Buchanan, in: M.F. Yan, K. Niwa, H.M. O'Bryan, Jr., W.S. Young, (Eds.), Advances in Ceramics, Vol. 26: Ceramic Substrates and Packages for Electronic Application, American Ceramic Society, Westerville, 1989, pp. 513.
    [78] JCPDS PDF#73441.
    [79] JCPDS PDF#3652357.
    [80] JCPDS PDF#491642.
    [81] A.H. Heuer, M. Ruhle, in: N. Claussen, M. Ruhle, A.H. Heuer (Eds.), Advances in ceramics, Vol 12: Science and Technology of Zirconia II, American Ceramic Society, Columbus, 1984, pp. 1.
    [82] F.C. Nonamaker, Chem. Met. Eng., 31 (1924) 151.
    [83] J.C. Gilles, Bull. Soc. Chim. Fr., 22 (1962) 2118.
    [84] R. Collongues, J.C. Gilles, A.M. Lejus, M. Perez, Jorba, D. Michel, Mater. Res. Bull., 2 (1967) 837.
    [85] Y.-B. Cheng, D.P. Thompson, J. Am. Ceram. Soc., 76 (1993) 683.
    [86] M. Lerch, J. Mater. Sci. Lett., 17 (1998) 441.
    [87] M. Lerch, F. Krumeich, R. Hock, Solid State Ionics, 95 (1997) 87.
    [88] M. Lerch, O. Rahauser, J. Mater. Sci., 32 (1997) 1357.
    [89] D.I. Bazhanov, A.A. Knizhnik, A.A. Safonov, A.A. Bagatur'yants, M.W. Stoker, A.A. Korkin, J. Appl. Phys., 97 (2005) 044108.
    [90] S.J. Clarke, C.W. Michie, M.J. Rosseinsky, J. Solid State Chem., 146 (1999) 399.
    [91] M. Lerch, E. Fuglein, J. Wrba, Z. Anorg. Allg. Chem., 622 (1996) 367.
    [92] R.B. Von Dreele, L. Eyring, A.L. Bowman, J.L. Yarnell, Acta Crystallogr., Sect. B: Struct. Sci., 31 (1975) 971.
    [93] M.R. Thornber, D.J.M. Bevan, J. Graham, Acta Crystallogr., Sect. B: Struct. Sci., 24 (1968) 1183.
    [94] JCPDS PDF#650961.
    [95] J.E. Hove, W.C. Riley, Modern Ceramics: Some Principles and Concepts, John Wiley, California, 1965, pp. 352.
    [96] L.E. Toth, Transition Metal Carbides and Nitrides, Academic press, New York, 1971, pp. 188.
    [97] J.-H. Huang, K.-W. Lau, G.-P. Yu, Surf. Coat. Technol., 191 (2005) 17.
    [98] A.J. Perry, V. Valvoda, D. Rafaja, Thin Solid Films, 214 (1992) 169.
    [99] E. Torok, A.J. Perry, L. Chollet, W.D. Sproul, Thin Solid Films, 153 (1987) 37.
    [100] A.J. Perry, Thin Solid Films, 193-194 (1990) 463.
    [101] P. Jin, S. Maruno, Jpn. J. Appl. Phys., 30 (1991) 1463.
    [102] E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schussler, Surf. Coat. Technol., 112 (1999) 108.
    [103] R.C. Garvie, P.S. Nicholson, J. Am. Ceram. Soc., 55 (1972) 152.
    [104] D.L. Porter, A.H. Heuer, J. Am. Ceram. Soc., 62 (1979) 298.
    [105] P. Kountouros, G. Petzow, in: S.P. Badwal, M. J. Bannister, R.H.J. Hannink (Eds.), Science and technology of zirconia V, Technomic Pub. Co., Lancaster, 1993, pp. 30.
    [106] A.G. Evans, A.H. Heuer, J. Am. Ceram. Soc., 63 (1980) 241.
    [107] R.M. McMeeking, A.G. Evans, J. Am. Ceram. Soc., 65 (1982) 242.
    [108] R.C. Garvie, R.H. Hannink, R.T. Pascoe, Nature, 258 (1975) 703.
    [109] F.F. Lange, J. Mater. Sci., 17 (1982) 225.
    [110] R. Sharma, D. Naedele, E. Schweda, Chem. Mater., 13 (2001) 4014.
    [111] R.C. Garvie, M.F. Goss, J. Mater. Sci., 21 (1986) 1253.
    [112] R.C. Garvie, M.V. Swain, J. Mater. Sci., 20 (1985) 1193.
    [113] R.C. Garvie, J. Phys. Chem., 82 (1978) 218.
    [114] R.C. Garvie, J. Phys. Chem., 69 (1965) 1238.
    [115] N.-L. Wu, T.-F. Wu, I.A. Rusakova, J. Mater. Res., 16 (2001) 666.
    [116] M.W. Pitcher, S.V. Ushakov, A. Navrotsky, B.F. Woodfield, G. Li, J. Boerio-Goates, B.M. Tissue, J. Am. Ceram. Soc., 88 (2005) 160.
    [117] D. Vollath, F. Fischer, M. Hagelstein, D. Szabo, J. Nanoparticle Res., 8 (2006) 1003.
    [118] E.G. Rauh, S.P. Garg, J. Am. Ceram. Soc., 63 (1980) 239.
    [119] M. Hillert, J. Am. Ceram. Soc., 74 (1991) 2005.
    [120] P. Li, I.W. Chen, J.E. Penner-Hahn, J. Am. Ceram. Soc., 77 (1994) 118.
    [121] M.I. Osendi, J.S. Moya, C.J. Serna, J. Soria, J. Am. Ceram. Soc., 68 (1985) 135.
    [122] S.P.S. Badwal, N. Nardella, Appl. Phys. A: Mater. Sci. Process., 49 (1989) 13.
    [123] H. Tomaszewski, K. Godwod, J. Eur. Ceram. Soc., 15 (1995) 17.
    [124] S. Jana, P.K. Biswas, Mater. Lett., 30 (1997) 53.
    [125] R. Gomez, T. Lopez, X. Bokhimi, E. munoz, J.L. boldu, O. Novaro, J. Sol-Gel Sci. Technol., 11 (1998) 309.
    [126] C.B. Azzoni, A. Paleari, Phys. Rev. B, 40 (1989) 6518.
    [127] R. Ruh, H.J. Garrett, J. Am. Ceram. Soc., 50 (1967) 257.
    [128] T.-J. Chung, J.-S. Lee, D.-Y. Kim, G.-H. Kim, H. Song, J. Am. Ceram. Soc., 84 (2001) 172.
    [129] C.R. Foschini, O.T. Filho, S.A. Juiz, A.G. Souza, J.B.L. Oliveira, E. Longo, E.R. Leite, C.A. Paskocimas, J.A. Varela, J. Mater. Sci., 39 (2004) 1935.
    [130] S. Fabris, A.T. Paxton, M.W. Finnis, Acta Mater., 50 (2002) 5171.
    [131] H.G. Scott, J. Mater. Sci., 10 (1975) 1527.
    [132] N. Claussen, R. Wagner, L.J. Gauckler, G. Petzow, J. Am. Ceram. Soc., 61 (1978) 369.
    [133] T.-J. Chung, J.-S. Lee, D.-Y. Kim, H. Song, J. Am. Ceram. Soc., 82 (1999) 3193.
    [134] M. Lerch, J. Am. Ceram. Soc., 79 (1996) 2641.
    [135] Y. Cheng, D.P. Thompson, J. Am. Ceram. Soc., 74 (1991) 1135.
    [136] G. Van Tendeloo, L. Anders, G. Thomas, Acta Metall., 31 (1983) 1619.
    [137] M. Lerch, J. Wrba, J. Lerch, J. Solid State Chem., 125 (1996) 153.
    [138] J. Wrba, M. Lerch, J. Eur. Ceram. Soc., 18 (1998) 1787.
    [139] T. Bredow, M. Lerch, Z. Anorg. Allg. Chem., 630 (2004) 2262.
    [140] T. Delachaux, C. Hollenstein, F. Levy, C. Verdon, Thin Solid Films, 425 (2003) 113.
    [141] M.A. Signore, A. Rizzo, L. Mirenghi, M.A. Tagliente, A. Cappello, Thin Solid Films, 515 (2007) 6798.
    [142] A. Rizzo, M.A. Signore, L. Mirenghi, T. Di Luccio, Thin Solid Films, 517 (2009) 5956.
    [143] C.-W. Chen, The Structure and Properties of Nano-crystalline Zr(N,O) Thin Films on AISI 304 Stainless Steel: Effect of Film Thickness, Master Thesis, National Tsing Hua University, R.O.C., 2007.
    [144] Y.-L. Liu, J.-H. Huang, J.-J. Kai, F.-R. Chen, Mater. Chem. Phys., 116 (2009) 503.
    [145] T. Okamoto, M. Fushima, K. Takizawa, Corros. Eng., 45 (1996) 425.
    [146] H. Uchida, S. Inoue, K. Koterazawa, Mater. Sci. Eng., A 234-236 (1997) 649.
    [147] W.-L. Pan, G.-P. Yu, J.-H. Huang, Surf. Coat. Technol., 110 (1998) 111.
    [148] B.F. Chen, W.L. Pan, G.P. Yu, J. Hwang, J.H. Huang, Surf. Coat. Technol., 111 (1999) 16.
    [149] J.-Y. Chen, G.-P. Yu, J.-H. Huang, Mater. Chem. Phys., 65 (2000) 310.
    [150] W.-J. Chou, G.-P. Yu, J.-H. Huang, Corros. Sci., 43 (2001) 2023.
    [151] J.-H. Huang, F.-Y. Ouyang, G.-P. Yu, Surf. Coat. Technol., 201 (2007) 7043.
    [152] Y. Ding, D.O. Northwood, Mater. Charact., 30 (1993) 13.
    [153] J.H. Baek, Y.H. Jeong, I.S. Kim, J. Nucl. Mater., 280 (2000) 235.
    [154] D. Briggs, M.P. Seah, Practical Surface Analysis: Auger and X-ray photoelectron spectroscopy, 2nd ed., John Wiley & Sons, Chichester, 1990.
    [155] http:/www.cem.msu.edu/~cem924sg/XPSASFs.html.
    [156] M. Del Re, R. Gouttebaron, J.-P. Dauchot, P. Leclere, G. Terwagne, M. Hecq, Surf. Coat. Technol., 174-175 (2003) 240.
    [157] C. Morant, J.M. Sanz, L. Galan, L. Soriano, F. Rueda, Surf. Sci., 218 (1989) 331.
    [158] I. Milošev, H.H. Strehblow, M. Gaberšček, B. Navinšek, Surf. Interface Anal., 24 (1996) 448.
    [159] M. Matsuoka, S. Isotani, W. Sucasaire, N. Kuratani, K. Ogata, Surf. Coat. Technol., 202 (2008) 3129.
    [160] P. Scherrer, Gott. Nachr., 2 (1918) 98.
    [161] JCPDS PDF#898343.
    [162] L.V. Azaroff, M.J. Buerger, The powder method in X-ray crystallography, McGraw-Hill New York, 1958, pp. 233.
    [163] W.C. Oliver, G.M. Pharr, Mater. Res. Soc., 7 (1992) 1564.
    [164] J.F. Shackelford, W. Alexander, J.S. Park, CRC Materials Science and Engineering Handbook, CRC Press, Boca Raton, 1994.
    [165] G.G. Stoney, Proc. R. Soc. Lond. A, 82 (1909) 172.
    [166] W. Zhang, Y.L. Yao, I.C. Noyan, J. Manuf. Sci. Eng . 126 (2004) 10.
    [167] C.H. Ma, J.H. Huang, H. Chen, Thin Solid Films, 418 (2002) 73.
    [168] T. Young, Philon. Trans. R. Soc., 9 (1805) 255.
    [169] D.K. Owens, R.C. Wendt, J. Appl. Polymer Sci., 13 (1969) 1741.
    [170] ASTM, Metal Handbook, Vol. 13, 9th ed., ASM International, Materials Park, 1988, pp. 212.
    [171] ASTM, Section 3 (1996) B117, pp. 4 and G85 pp. 350.
    [172] CIE, Colorimetry, Tech. Rept., 15, Bureau Central de la CIE, Paris, 1971, pp. 1.
    [173] CIE, Recommendations on uniform color spaces, color difference equation and psychometric terms, Supplement No. 2 to CIE publication No. 15, Tech. Rept., Bureau Central de la CIE, Paris, 1978, pp. 1.
    [174] ASTM, Symposium on Color, American Society for Testing Materials, Philadelphia, 1941, pp. 3.
    [175] M. Kilo, M.A. Taylor, C. Argirusis, G. Borchardt, M. Lerch, O. Kaitasov, B. Lesage, Phys. Chem. Chem. Phys., 6 (2004) 3645.
    [176] C.-C. Tsai, Synthesis and characterization of amorphous and crystalline Zr-Cu-Ag-Al metallic films deposited by unbalanced magnetron sputtering, Master Thesis, National Tsing Hua University, R.O.C., 2008.
    [177] T. Bredow, Phys. Rev. B, 75 (2007) 144102.
    [178] P. Li, I.W. Chen, J.E. Penner-Hahn, Phys. Rev. B, 48 (1993) 10063.
    [179] J.-H. Huang, C.-H. Ho, G.-P. Yu, Mater. Chem. Phys., 102 (2007) 31.
    [180] G. KnoKner, K. Reimann, R. Rower, U. Sodervall, H.-E. Schaefer, Proc. Natl. Acad. Sci., 100 (2003) 3870.
    [181] D. Hegemann, H. Brunner, C. Oehr, Nucl. Instrum. Methods Phys. Res., Sect. B, 208 (2003) 281.
    [182] F. Walther, P. Davydovskaya, S. Zurcher, M. Kaiser, H. Herberg, A.M. Gigler, R.W. Stark, J. Micromech. Microeng., 17 (2007) 524.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE