簡易檢索 / 詳目顯示

研究生: 陳彥仰
Chen, Yen-Yang
論文名稱: 具功因修正前級標準與無位置感測切換式磁阻馬達驅動系統之開發
DEVELOPMENT OF STANDARD AND POSITION SENSORLESS SWITCHED-RELUCTANCE MOTOR DRIVE WITH POWER FACTOR CORRECTED FRONT-END
指導教授: 廖聰明
Liaw, Chang-Ming
口試委員: 李建興
陳盛基
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 138
中文關鍵詞: 切換式磁阻馬達並聯主動式濾波器無位置感測控制功因校正再生煞車換相移位升壓反轉
外文關鍵詞: switched-reluctance motor, shunt active power filter, position sensorless control, power factor correction, regenerative braking, commutation shift, voltage boosting, reversible
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在開發具兩種功因校正前級之標準與無位置感測切換式磁阻馬達驅動系統。首先,建構一具非對稱橋式轉換器之標準切換式磁阻驅動系統,由其操控體會一些基本及關鍵事務。藉由電力電路及控制機構之適當設計,所建馬達驅動系統具良好驅動特性。接著,本文提出基於電壓窄波注入之切換式磁阻馬達無位置感測控制架構。藉由數位訊號處理器之脈寬調變通道,注入適當頻率及導通時間之脈波電壓於馬達非激磁相線圈。由感測電流獲得估測之霍爾訊號,並將其用以從事切換式磁阻馬達驅動之換相操作。再施行適應性及直觀性換相時刻調控以獲得等值之最大轉矩/安培。所建無位置感測控制切換磁阻馬達驅動系統具媲美於標準系統之操控性能,如良好之加/減速、動態響應、反轉以及再生煞車等操作特性。
    接著,開發一個三相六開關四象限升壓切換式整流器,並將其作為切換式磁阻馬達驅動系統之前級轉換器。其具可調及良好調節能力之直流鏈電壓,可有效增強切換式磁阻馬達在高速下之驅動性能,且可將再生煞車能量送回市電。此外,本論文開發一新型具功因校正之前級轉換器,其由一橋式整流器並接一並聯式主動式濾波器組成。可用較低容量之功率模組達成再生煞車和功因校正,然而其直流鏈不具升壓與穩壓能力。最後,應用所建二種交流-直流前級轉換器供電之切換式磁阻馬達驅動系統,將實測比較評估其驅動特性。


    This thesis is mainly concerned with the development of a standard and a position sensorless switched-reluctance motor (SRM) drives equipped with two kinds of power factor corrected (PFC) AC/DC front-end converters. First, for comprehending the basics and key issues of SRM, a standard SRM drive with asymmetric bridge converter is established. Good driving characteristics obtained via properly designing its schematic and control scheme are confirmed experimentally. Next, a SRM position sensorless control scheme based on narrow pulse voltage injection is proposed. The voltage pulses with suited frequency and duration are injected into the unexcited phase winding via the embedded DSP PWM channel. An observed Hall signal is yielded from the sensed current and used for making the commutation operation of SRM drive. Then the adaptive and intuitive tunings for the commutation instant are performed to achieve the equivalent maximum torque per ampere (TPA) characteristics. The established position sensorless controlled SRM drive possesses good driving performance comparable to those of standard one in acceleration/deceleration, dynamic response, reversible and regenerative braking operating characteristics.
    Next, a three-phase six-switch four-quadrant boost SMR is developed and used as the front-end of the SRM drive. The DC-link voltage of the SRM drive is adjustable and well regulated for effectively enhancing the SRM driving performance under higher speeds. Moreover, the recovery of regenerative braking energy back to the mains is achievable. Furthermore, a new PFC front-end consisting of a diode rectifier and an anti-paralleled active power filter (APF) is proposed. It allows the use of IGBT module with lower rating to achieve the regenerative braking and PFC functions. However, the DC-link voltage boosting and regulating abilities are sacrificed. Finally, the SRM drive powered from the three-phase six-switch SMR and the proposed APF based PFC front-end are comparatively evaluated their performances.

    摘要 致謝 目錄 第一章、簡介 第二章、切換式磁阻馬達驅動系統之基礎 第三章、標準切換式磁阻馬達驅動系統之建構 第四章、具全橋切換式整流器前端之切換式磁阻馬達驅動系統 第五章、具主動式濾波器輔助橋式整流器交流/直流前端之切換式磁阻馬達驅動系統 第六章、無位置感測控制切換式磁阻馬達驅動系統 第七章、結論 附錄:英文論文

    REFERENCES
    A. Fundamentals of SRM
    [1] T. J. E. Miller, Switched Reluctance Motors and Their Control, Oxford: Clarendon Press, 1993.
    [2] R. Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications, New York: CRC Press, 2001.
    [3] H. C. Lovatt, M. C. Clelland and J. M. Stephenson, “Comparative performance of singly salient reluctance, switched reluctance and induction motors,” in Proc. IEE Conf. Elect. Mach. and Drives, 1997, pp. 361-365.
    [4] K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kW IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp.2303-2309, 2012.
    [5] K. Vijayakumar, R. Karthikeyan, S. Paramasivam, R. Arumugam and K. N. Srinivas, “Switched-reluctance motor modeling, design, simulation, and analysis: a comprehensive review,” IEEE Trans. Magn., vol. 44, no. 12, pp. 4605-4617, 2008.
    [6] N. Schofield, S. A. Long, D. Howe and M. McClelland, “Design of a switched reluctance machine for extended speed operation,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 116-122, 2009.
    [7] P. C. Desai, M. Krishnamurthy, N. Schofield and A. Emadi, “Novel switched reluctance machine configuration with higher number of rotor poles than stator poles: Concept to implementation, ” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649-659, 2010.
    [8] T. Ishikawa and H. Dohmeki, ”The fundamental design technique of switched reluctance motors, and comparison with PMSM” in Proc. IEEE ICEM, 2012, pp. 500-504.
    [9] K. Ohyama, Y. Nakazawa, K. Nozuka and H. Fujii “Design of high efficient switched reluctance motor for electric vehicle,” in Proc. IEEE IECON, 2013, pp. 7325-7330.
    [10] M. Cacciato, A. Consoli, G. Scarcella and G. Scelba, “A switched reluctance motor drive for home appliances with high power factor capability,” in Proc. IEEE PESC, 2008, pp. 1235-1241.
    [11] Y. W. Lin, K. F. Chou, M. J. Yeh, C. C. Wang, S. L. Yu, C. C. Yang, Y. C. Chang and C. M. Liaw, “Design and control of a switched-reluctance motor-driven cooling fan,” IET Power Electron. , vol. 5, no. 9, pp. 1813-1826, 2012.
    [12] A. Omekanda, B. Lequesne, H. Klode, S. Gopalakrishnan and I. Husain, “Switched reluctance and permanent magnet brushless motors in highly dynamic situations: a comparison in the context of electric brakes,” IEEE Mag. Ind. Appl., vol. 15, no. 4, pp. 35-43, 2009.
    [13] L. Kolomeisev, D. Kraynov, S. Pakhomin, F. Rednov, E. Kallenbach, V. Kireev, T. Schneider and J. Bocker, “Control of a linear switched reluctance motor as a propulsion system for autonomous railway vehicles,” in Proc. EPE-PEMC, 2008, pp.1598-1603.
    [14] I-A. Viorel, L. Szabo, L. Lowenstein and C. Stet, “Integrated starter-generators for automotive applications,” Acta Electrotehnica., vol. 45, no. 3, pp.255-260, 2004.
    [15] B. Bilgin, A. Emadi and M. Krishnamurthy, “Comprehensive evaluation of the dynamic performance of a 6/10 SRM for traction application in PHEVs,” IEEE Trans. Ind. Electron., vol. 60, no. 7, pp. 2564-2575, 2013.
    B. SRM Converters
    [16] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1047, 1991.
    [17] A. M. Hava, V. Blasko and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1017-1022, 1992.
    [18] S. Mir, I. Husain and M.E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, no. 5, pp. 912-921, 1997.
    [19] A. Deris Zadeh, E. Adib, H. Farzanehfard and S. M. Saghaian Nejad, “New converter for switched reluctance motor drive with wide speed range operation,” in Proc. IEEE PEDSTC, 2011, pp. 473-477.
    [20] V. V. Deshpande and Y. L. Jun, “New converter configurations for switched reluctance motors wherein some windings operate on recovered energy,” IEEE Trans. Ind. Appl., vol. 38, no. 6, pp. 1558-1565, 2002.
    [21] H. L. Huy, K. Slimani and P. Viarouge, “A current-controlled quasi-resonant converter for switched-reluctance motor,” IEEE Trans. Ind. Electron., vol. 38, no. 5, pp.355-362, 1991.
    [22] Y. Murai, J. Cheng and M. Yoshida, “New soft-switched reluctance motor drive circuit,” in Proc. IEEE IAS, 1997, vol. 1, pp. 676-681.
    [23] C. K. Pan, A DSP-based soft-switching converter-fed switched reluctance motor drive, Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2003.
    [24] Y. G. Dessouky, B. W. Williams and J. E. Fletcher, “A novel power converter with voltage-boosting capacitors for a four-phase SRM drive,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 815-823, 1998.
    [25] A. Dahmane, F. Meebody and F. M. Sargos, “A novel boost capacitor circuit to enhance the performance of the switched reluctance motor,” in Proc. IEEE PESC, 2001, vol. 2, pp. 844-849.
    [26] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IEE Proc. Elect. Power Appl., vol. 147, no. 5, pp. 337-344, 2000.
    [27] H. C. Chang and C. M. Liaw, “On the front-end converter and its control for a battery powered switched-reluctance motor drive,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 2143-2156, 2008.
    [28] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009.
    [29] T. Gopalarathnam and H. A. Toliyat, “A high power factor converter topology for switched reluctance motor drives,” in Proc. IEEE IAS, 2002, vol. 3, pp. 1647-1652.
    [30] J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front-end,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 30-42, 2009.
    [31] J. Y. Chai, Y. C. Chang and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
    C. Modeling and Dynamic Controls
    [32] V. Vujicic and S. N. Vukosavic, “A simple nonlinear model of the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 15, no. 4, pp. 395-400, 2000.
    [33] B. P. Loop and S. D. Sudhoff, “Switched reluctance machine model using inverse inductance characterization,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 743-751, 2003.
    [34] N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Appl., vol. 36, pp. 714-722, 2000.
    [35] K. I. Hwu, Development of a switched reluctance motor drive, Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, ROC, 2001.
    [36] R. Gobbi and K. Ramar, “Optimization techniques for a hysteresis current controller to minimize torque ripple in switched reluctance motors,” IET Proc. Elect. Power Appl., vol. 3, no. 5, pp. 453-460, 2009.
    [37] H. K. Bae and R. Krishnan, “A study of current controllers and development of a novel current controller for high performance SRM drives,” in Proc. IEEE IAS, 1996, vol. 1, pp. 68-75.
    [38] F. Blaabjerg, P. C. Kjaer, P. O. Rasmussen and C. Cossar, “Improved digital current control methods in switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 563-572, 1999.
    [39] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
    [40] L. Ben Amor, L.-A. Dessaint and O. Akhrif, “Switched reluctance motor torque control with peak current minimization,” in Proc. IEEE IECON, 2004, vol. 2, pp. 1885-1890.
    [41] K. Wong, “Energy-efficient peak-current state-machine control with a peak power mode,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 489-498, 2009.
    [42] G. John and A. R. Eastham, “Robust speed control of a switched reluctance drive,” in Proc. IEEE CCECE, 1993, vol. 1, pp. 317-320.
    [43] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997.
    [44] C. Lucas, M. M. Shanehchi, P. Asadi and P. M. Rad, “A robust speed controller for switched reluctance motor with nonlinear QFT design approach,” in Proc. IEEE IAS, 2000, vol. 3, pp. 1573-1577.
    [45] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor drive,” IEE Proc. Elect. Power Appl., vol. 148, no. 4, pp. 345-353, 2001.
    [46] C. Bian, Y. Man, C. Song and S. Ren, “Variable structure control of switched reluctance motor and its application,” in Proc. IEEE WCICA, 2006, vol. 1, pp. 2490-2493.
    [47] M. A. A. Morsy, M. S. A. Moteleb and H. T. Dorrah, “Development of robust fuzzy sliding mode control technique for nonlinear drive systems,” in Proc. IEEE MHS, 2006, pp. 1-6.
    [48] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
    [49] D. E. Cameron, J. H. Lang and S. D. Umans, “The origin and reduction of acoustic noise in doubly salient variable-reluctance motors,” IEEE Trans. Ind. Appl., vol. 28, no. 1, pp. 1250-1255, 1992.
    [50] J. Y. Chai, Y. W. Lin and C. M. Liaw, “Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor,” IEE Proc. Elect. Power Applicat., vol. 153, no. 3, pp. 348-360, 2006.
    [51] J. Y. Chai and C. M. Liaw, “On the reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling” IEE Proc. Elect. Power Applicat., vol. 4, no. 5, pp. 380-396, 2010.
    [52] V. P. Vujicic, “Minimization of torque ripple and copper losses in switched reluctance drive,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 388-399, 2012.
    D. Commutation Instant Tuning
    [53] R. Orthmann and H. P. Schoner, “Turn-off angle control of switched reluctance motors for optimum torque output,” in Proc. IET Conf. Power Electron. and Appl., 1993, vol. 6, pp. 20-25.
    [54] J. J. Gribble, P. C. Kjaer, C. Cossar and T. J. E. Miller, “Optimal commutation angles for current controlled switched reluctance motors,” in Proc. IET ICPEVSD, 1996, pp. 87-92.
    [55] B. Fahimi, G. Suresh, J. P. Johnson, M. Ehsani, M. Arefeen and I. Panahi, “Self-tuning control of switched reluctance motors for optimized torque per ampere at all operating points,” in Proc. IEEE APEC, 1998, vol. 2, pp. 778-783.
    [56] M. Rodrigues, P. J. Costa Branco and W. Suemitsu, “Fuzzy logic torque ripple reduction by turn-off angle compensation for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 48, pp. 711-715, 2001.
    [57] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
    [58] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
    [59] Y. Sozer and D. A. Torrey, “Optimal turn-off angle control in the face of automatic turn-on angle control for switched-reluctance motors,” IET Power Elect. Appl. , vol. 1, no. 3, pp. 395-401, 2007.
    [60] S. A. Fatemi, H. M. Cheshmehbeigi and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. IEEE ECCTD, 2009, pp. 851-856.
    E. Switch-mode Rectifiers and Active Power Filters
    [61] M. Hengchun, F. C. Y. Lee, D. Boroyevich and S. Hiti, “Review of high performance three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 437-446, 1997.
    [62] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
    [63] Y. Jang and M. M. Jovanovic, “A comparative study of single-switch three-phase high power-factor rectifiers,” IEEE Trans. Ind. Appl., vol. 34, no. 6, pp. 1327-1334, 1998.
    [64] J. Y. Chai, Y. C. Chang and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
    [65] Y. Jang and M.M. Jovanović, “The Taipei rectifier– a new three-phase two-switch ZVS PFC DCM boost rectifier” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 686-694, 2013.
    [66] L. Ben-Brahim, “The analysis and compensation of dead-time effects in three phase PWM inverters,” in Proc. IEEE IECON, 1998, vol. 2 pp. 792-797.
    [67] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems– part I” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
    [68] T. Friedli, M. Hartmann and J. W. Kolar, “The essence of three-phase PFC rectifier systems– part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014.
    [69] B. Singh, K. Al-Haddad and A. Chandra, “A review of active filters for power quality improvement,” IEEE Trans. Ind. Electron., vol. 46, no. 5, pp. 960-971, 1999.
    [70] M. El-Habrouk, M.K. Darwish and P. Mehta, “Active power filters: a review,” IEE Proc. Elect. Power Appl., vol. 147, no. 5, pp. 403-413, 2000.
    [71] H. Akagi, E. H. Watanabe and M. Aredes, Instantaneous Power Theory and Applications to Power Conditioning, Wiley-IEEE Press, 2007.
    [72] P. Verdelho and G. D. Marques, “An active power filter and unbalanced current compensator,” IEEE Trans. Ind. Electron., vol. 44, no. 3, pp. 321-328, 1997.
    [73] S. Rahmani, N. Mendalek and K. Al-Haddad, “Experimental design of a nonlinear control technique for three-phase shunt active power filter,” IEEE Trans. Ind. Electron., vol. 57, no. 10, pp. 3364-3375, 2010.
    [74] M. Sarra, J. Gaubert, A. Chaoui and F. Krim, “Two control strategies comparison of a three phase shunt active power filter for power quality improvement with experimental validation,” in Proc. IEEE EPE, 2011, pp. 1-11.
    F. Regenerative Braking
    [75] B. T. Ooi, L. W. Dixon, A. B. Kulkarni and M. Nishimoto, “An integrated AC drive system using a controlled-current PWM rectifier/inverter link,” IEEE Trans. Power Electron., vol. 3, no. 1, pp. 64-71, 1988.
    [76] J. W. Kolar, H. Ertl, F. C. Zach, V. Blasko, V. Kaura and R. Lukaszewski, “A novel concept for regenerative braking of PWM-VSI drives employing a loss-free braking resistor,” in Proc. IEEE APEC, 1997, vol. 1, pp. 297-305.
    [77] B. Piepenbreier and L. Sack, “Regenerative drive converter with line-frequency switched rectifier and without DC link components,” in Proc. IEEE PESC, 2004, vol. 5, pp. 3917-3923.
    [78] L. Lihua, K. Smedley and J. Taotao, “A new three-phase rectifier for regenerative braking application,” in Proc. PESC, 2007, pp. 2854-2860.
    [79] J. Jiang and J. Holtz, “An efficient braking method for controlled AC drives with a diode rectifier front end,” IEEE Trans. Ind. Appl., vol. 37, no. 5, pp. 1299-1307, 2001.
    [80] G. Hongwei, G. Yimin and M. Ehsani, “neural network based SRM drive control strategy for regenerative braking in EV and HEV,” in Proc. IEEE IEMDC, 2001, pp. 571-575.
    [81] A. Komatsuzaki, T. Banba and I. Miki, “A position sensorless drive using estimation of turn-off angle regenerative braking in switching reluctance motor,” in Proc. IEEE ICEMS, 2007, pp. 450-455.
    H. Position Sensorless Control
    [82] M. Ehsani and B. Fahimi, “Elimination of position sensors in switched reluctance motor drives: state of the art and future trends,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 40-47, 2002.
    [83] E. Messe and D. A. Torrey, “An approach for sensorless position estimation for switched reluctance motors using artificial neural networks,” IEEE Trans. Power Electron., vol. 17, no. 1, pp. 66-75, 2002.
    [84] G. Suresh, B. Fahimi and M. Ehsani, “Improvement of the accuracy and speed range in sensorless control of switched reluctance motors,” in Proc. IEEE APEC, 1998, vol. 2, pp. 770-777.
    [85] G. Suresh, B. Fahimi, K. M. Rahman, M. Ehsani and I. Panahi, “Four-quadrant sensorless SRM drive with high accuracy at all speeds,” in Proc. IEEE APEC, 1999, vol. 2, pp. 1226-1231.
    [86] E. Bassily, “New rotor-position estimation technique for sensorless switched reluctance motor,” in Proc. IEEE AMC, 2008, pp. 399-404.
    [87] P. Bishop, A. Khalil and I. Husain, “Low level amplitude modulation based sensorless operation of a switched reluctance motor,” in Proc. IEEE PESC, 2004, vol. 5, pp. 3347-3352.
    [88] E. Kayikci, M. C. Harke and R. D. Lorenz, “Load invariant sensorless control of a SRM drive using high frequency signal injection,” in Proc. IEEE IAS, 2004, vol. 3, pp. 1632-1637.
    [89] E. Kayikci and R. D. Lorenz, “Self-sensing control of a four phase switched reluctance drive using high frequency signal injection including saturation effects,” in Proc. IEEE IEMDC, 2009, pp. 611-618.
    [90] G. Gallegos-Lopez, P. C. Kjaer and T. J. E. Miller, “A new sensorless method for switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 832-840, 1998.
    [91] J. Bekiesch and G. Schroder, “Sensorless operation of the switched reluctance machine,” in Proc. IEEE EPE, 2007, pp. 1-8.
    [92] T. Wakasa, H. J. Guo and O. Ichinokura, “A simple position sensorless driving system of SRM based on new digital PLL technique,” in Proc. IEEE IECON, 2002, vol. 1, pp. 502-507.
    [93] H. Gao, F. R. Salmasi and M. Ehsani, “Sensorless control of SRM at standstill,” in Proc. IEEE APEC, 2001, vol. 2, pp. 850-856.
    [94] M. Krishnamurthy, C. S. Edrington and B. Fahimi, “Prediction of rotor position at standstill and rotating shaft conditions in switched reluctance machines,” IEEE Trans. Power Electron., vol. 21, no. 1, pp. 225-233, 2006.
    [95] A. Komatsuzaki, T. Bamba and I. Miki, “A position sensorless speed control for switched reluctance motor at low speeds,” in Proc. IEEE PES, 2007, pp. 1-7.
    [96] H. J. Guo, M. Takahashi, T. Watanabe and O. Ichinokura, “A new sensorless drive method of switched reluctance motors based on motor's magnetic characteristics,” IEEE Trans. Magnetics, vol. 37, no. 4, pp. 2831-2833, 2001.
    [97] H. J. Guo, W. B. Lee, T. Watanabe and O. Ichinokura, “An improved sensorless driving method of switched reluctance motors using impressed voltage pulse,” in Proc. IEEE PCC, 2002, vol. 3, pp. 977-980.
    [98] S. Kachapornkul, P. Somsiri, N. Chayopitak, K. Tungpimolrut, R. Pupadubsin and P. Jitkreeyan, “Sensorless control of switched reluctance motor for three-phase full-bridge inverter drive,” in Proc. IEEE ICEMS, 2008, pp. 3321-3326.
    [99] G. Pasquesoone, R. Mikail and I. Husain, “Position estimation at starting and lower speed in three-phase switched reluctance machines using pulse injection and two thresholds,” IEEE Trans. Ind. Appl., vol. 47, no. 4, pp. 1724-1731, 2011.
    [100] A. Khalil, S. Underwood, I. Husain, H. Klode, B. Lequesne, S. Gopalakrishnan and A. M. Omekanda, “Four-quadrant pulse injection and sliding mode observer based sensorless operation of a switched reluctance machine over entire speed range including zero speed,” IEEE Trans. Ind. Appl., vol. 43, no. 3, pp. 714-723, 2007.
    [101] K. R. Geldhof, A.P.M. Van den Bossche and J. A. Melkebeek, “Rotor-position estimation of switched reluctance motors based on damped voltage resonance,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 2954-2960, 2010.
    I. Others
    [102] Digital signal controller TMS320F28335 datasheet, http://www.ti.com/lit/gpn/ tms320f28335
    [103] J. Y. Chai, Development and control of a switched-reluctance motor drive with power factor front-end, Ph. D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, ROC, 2008.
    [104] C. M. Wang, Development of switched-reluctance motor drive with three-phase switch-mode rectifier front-end, Master Thesis, Department of Electrical Engineering , National Tsing Hua University, ROC, 2010.
    [105] C. H. Tseng, A position sensorless switched-reluctance motor drive with three-phase four-quadrant switch-mode rectifier front-end, Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2013.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE