研究生: |
葉依婷 Yeh, Yi-Ting |
---|---|
論文名稱: |
細胞外刺激對血管平滑肌細胞及內皮細胞增生機制之探討 Mechanisms of Smooth Muscle and Endothelial Cell Proliferation in Response to Extracellular Stimuli |
指導教授: |
裘正健
Chiu, Jeng-Jiann 莊永仁 Chuang, Yung-Jen |
口試委員: |
林秀芳
Yet, Shaw-Fang 劉俊揚 Liou, Jun-Yang 陳怡榮 Chen, Yi-Rong |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2012 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 101 |
中文關鍵詞: | 平滑肌細胞 、內皮細胞 、細胞週期 、細胞外基質 、纖維型膠原蛋白 、血小板衍生生長因子 、介白素 、硬度 |
外文關鍵詞: | Smooth Mucle Cells, Endothelial Cells, Cell Cycle, Extracellular Matrix, Fibrillar Collagen, PDGF-BB, IL-1beta, Stiffness |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
平滑肌與內皮細胞之增生在血管疾病的病程中扮演著重要的角色。平滑肌細胞增生可以被細胞外微環境所產生之物理與化學變化所驅動。這些變化包括了接觸面基質的組成、細胞激素及生長因子的刺激,而這些刺激所造成之平滑肌細胞增生會惡化成動脈硬化之主要特徵,血管壁內膜增生。當動脈壁因血管疾病而產生硬化時,內皮細胞也會因應此細胞外機械力的變化而促其產生增生之現象,伴隨著發炎反應及加劇血管內皮功能障礙。本篇論文將探討平滑肌與內皮細胞遭受到不同胞外刺激時所引起之細胞增生分子機制。
為了要釐清物理性單層型對照於纖維型膠原蛋白與化學性PDGF-BB/IL-1對照於溶劑組刺激對調控平滑肌細胞增生之分子機制,實驗為將平滑肌細胞培養於單層型或纖維型之第一型膠原蛋白上;同時,也將培養於纖維型之膠原蛋白上之平滑肌細胞同時給予PDGF-BB/IL-1之刺激。結果發現這些物理性及化學性的刺激能引發相同之細胞週期訊息,其中包括了增加CDK-4/6與cyclins-A/D1之蛋白表現,以及增加Rb之磷酸化,使E2F2/3得以與Rb分離。這個細胞週期可以被PI3K所引起之Akt與p38 MAPK,在上游進行正負向的調控。而纖維型膠原蛋白能降解平滑肌細胞之p66Shc,此蛋白上之serine-36磷酸化能夠調控單層型膠原蛋白及PDGF-BB/IL-1之刺激所造成之細胞周期及增生。單層型膠原蛋白能透過1 integrin,而PDGF-BB/IL-1之刺激則是透過PDGF受體型,都能造成p66Shc表現增加,進而驅動下游平滑肌之增生訊息。這些結果說明了物理性及化學性之刺激都能夠藉由p66Shc,進而活化下游之PI3K,而其所引起之Akt與p38 MAPK都能夠正負調控平滑肌細胞之細胞週期及增生。
為了要了解胞外基質之機械特性,對內皮細胞增生之分子機制之影響,實驗以高硬度HSG,21.5 kPa與低硬度LSG,1.72 kPa之水凝膠做為內皮細胞貼附之細胞外基質,用以研究內皮細胞之增生機制。研究結果發現,相較於低硬度膠,內皮細胞生長於高硬度膠上表現出高生長率、明顯之stress fibers與較高之RhoA活性。而抑制RhoA活性則能夠減弱高硬度膠所引起之stress fibers及細胞增生。Src及Vav2RhoA上游正向調控蛋白之磷酸化參與在高硬度膠所引起之內皮細胞增生。當培養於低硬度膠時,內皮細胞則會高度表現SEPT9,其為RhoA上游之負向調控蛋白。抑制SEPT9能增加內皮細胞在低硬度膠之RhoA活性、Src/Vav2之磷酸化及促進細胞增生。進一步的研究更發現,內皮細胞在低硬度的膠上會有較多不活化態的v3 integrin,其能夠造成SEPT9在低硬度膠上表現量增加、進而減弱Src/Vav2之磷酸化、抑制RhoA活性及其所主導之內皮細胞增生。這些結果說明了SEPT9/Src/Vav2/RhoA之訊息傳導路徑,對機械力所調控之內皮細胞增生扮演著重要的分子機制。
藉由此篇論文的研究,我們1定義出p66Shc,能夠同時調控著物理及化學性刺激所造成之平滑肌細胞之細胞週期及增生,2也定義了SEPT9所主導之新訊息路徑,能夠調控細胞外基質之機械特性所造成之內皮細胞增生。由於平滑肌與內皮細胞之增生在血管疾病的病程中扮演著重要的角色,此篇論文之研究結果可以幫助了解這些細胞在病生理過程中之分子層面、並提供未來醫療用途之藥物標靶之基礎。
Cell proliferation of smooth muscle cells (SMCs) and endothelial cells (ECs) play important roles in the pathologenesis of vascular diseases. SMC proliferation can be triggered by mechanical and chemical changes in the extracellular microenvironment. This includes surface composition, cytokines and growth factors, which contribute to the neointima formation, a prominent feature in athersclerosis. ECs also respond to arterial stiffening during the progression of vascular diseases and when proliferation increases, inflammation and cell dysfunction advance. Here, we study the molecular mechanisms in the regulation of SMC and EC proliferation.
To elucidate the mechanisms by which physical (monomeric vs. fibrillar collagens) and chemical (platelet-derived growth factor (PDGF)-BB/interleukin (IL)-1 vs. vehicle controls) stimuli modulate the cell cycle and proliferation, SMCs were cultured on monomeric or fibrillar type I collagens. In parallel experiments, SMCs on fibrillar collagen were co-stimulated with PDGF-BB/IL-1. These physical and chemical factors induced common cell cycle signaling events, including upregulation of cyclin-dependent kinase-4/6 and cyclins A/D1, phosphorylation of retinoblastoma (Rb) and its dissociation with E2F2/3. The physical and chemical inductions of SMC cycle signaling and progression were oppositely regulated by phosphatidylinositol 3-kinase (PI3K)-mediated Akt and p38 mitogen-activated protein kinase (MAPK). Fibrillar collagen degraded p66Shc, whose induction and Ser36-phosphorylation regulated monomeric collagen- and PDGF-BB/IL-1-induced SMC cycle signaling and progression. These physical and chemical modulations in p66Shc were mediated by 1 integrin and PDGF receptor-, respectively. These results demonstrate that fibrillar collagen-regulated p66Shc converge the physical and chemical stimuli to modulate SMC cycle and proliferation through PI3K-mediated Akt and p38 MAPK, and they oppositely regulate common downstream cell cycle signaling cascades.
To demonstrate the mechanism of extracellular matrix (ECM) mechanics on EC proliferation, hydrogels with high stiffness (HSG, 21.5 kPa) in comparison to those with low stiffness (LSG, 1.72 kPa) were used to study EC proliferation. ECs cultured on HSG showed a higher proliferative rate, more prominent stress fibers and higher RhoA activity when compared with ECs on LSG. Blocking RhoA attenuated stress fiber formation and proliferation of ECs on HSG but had little effect on ECs on LSG. Phosphorylations of Src and Vav2, positive RhoA upstream effectors, were involved in HSG-mediated RhoA activation and EC proliferation but exhibited nominal effects on ECs grown on LSG. Septin 9 (SEPT9), the negative upstream effector for RhoA, was significantly higher in ECs on LSG. SEPT9 inhibition increased RhoA activation, Src/Vav2 phosphorylation levels, and EC proliferation on LSG, but ECs on HSG showed only minor responses. Furthermore, ECs on LSG had an inactivation of αvβ3 integrin which caused an increase of SEPT9 expression that attenuated Src/Vav2 phosphorylation levels and inhibited RhoA-dependent EC proliferation. These results demonstrate that the SEPT9/Src/Vav2/RhoA pathway constitutes an important molecular mechanism for the mechanical regulation of EC proliferation.
In summary, our results 1 identified p66Shc is the convergent molecule that responds to physical and chemical stimuli resulting in SMC cell cycle regulation and proliferation, and 2 generated novel insight into the SEPT9-mediated pathway in ECM mechanics-regulated EC proliferation. Since both SMC and EC proliferation play important roles in the progression of vascular diseases, our results may enhance the molecular understanding of the pathophysiological process and may provide foundations for molecular target therapeutic applications in the future.
1. Wagenseil, J. E. and Mecham, R. P. (2009). Vascular extracellular matrix and arterial mechanics. Physiol Rev 89, 957-989.
2. Davis, E. C. (1993). Endothelial cell connecting filaments anchor endothelial cells to the subjacent elastic lamina in the developing aortic intima of the mouse. Cell Tissue Res 272, 211-219.
3. Schwartz, S. M. and Benditt, E. P. (1972). Studies on aortic intima. I. Structure and permeability of rat thoracic aortic intima. Am J Pathol 66, 241-264.
4. Davis, E. C. (1993). Smooth muscle cell to elastic lamina connections in developing mouse aorta. Role in aortic medial organization. Lab Invest 68, 89-99.
5. Dingemans, K. P., Teeling, P., Lagendijk, J. H. and Becker, A. E. (2000). Extracellular matrix of the human aortic media: an ultrastructural histochemical and immunohistochemical study of the adult aortic media. Anat Rec 258, 1-14.
6. O'Connell, M. K., Murthy, S., Phan, S., Xu, C., Buchanan, J., Spilker, R., Dalman, R. L., Zarins, C. K., Denk, W. and Taylor, C. A. (2008). The three-dimensional micro- and nanostructure of the aortic medial lamellar unit measured using 3D confocal and electron microscopy imaging. Matrix Biol 27, 171-181.
7. Karrer, H. E. (1961). An electron microscope study of the aorta in young and in aging mice. J Ultrastruct Res 5, 1-27.
8. Stenmark, K. R., Davie, N., Frid, M., Gerasimovskaya, E. and Das, M. (2006). Role of the adventitia in pulmonary vascular remodeling. Physiology (Bethesda) 21, 134-145.
9. Owens, G. K., Kumar, M. S. and Wamhoff, B. R. (2004). Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84, 767-801.
10. Alexander, M. R. and Owens, G. K. (2012). Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease. Annu Rev Physiol 74, 13-40.
11. Pearson, J. D. (2000). Normal endothelial cell function. Lupus 9, 183-188.
12. Cines, D. B., Pollak, E. S., Buck, C. A., Loscalzo, J., Zimmerman, G. A., McEver, R. P., Pober, J. S., Wick, T. M., Konkle, B. A., Schwartz, B. S. et al. (1998). Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91, 3527-3561.
13. Chiu, J. J., Chen, C. N., Lee, P. L., Yang, C. T., Chuang, H. S., Chien, S. and Usami, S. (2003). Analysis of the effect of disturbed flow on monocytic adhesion to endothelial cells. J Biomech 36, 1883-1895.
14. Chien, S. (2007). Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol 292, H1209-1224.
15. Chiu, J. J. and Chien, S. (2011). Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 91, 327-387.
16. Gimbrone, M. A., Jr. (1995). Vascular endothelium: an integrator of pathophysiologic stimuli in atherosclerosis. Am J Cardiol 75, 67B-70B.
17. Dimmeler, S., Haendeler, J. and Zeiher, A. M. (2002). Regulation of endothelial cell apoptosis in atherothrombosis. Curr Opin Lipidol 13, 531-536.
18. Bergan, J. J., Schmid-Schonbein, G. W., Smith, P. D., Nicolaides, A. N., Boisseau, M. R. and Eklof, B. (2006). Chronic venous disease. N Engl J Med 355, 488-498.
19. Chiu, J. J., Usami, S. and Chien, S. (2009). Vascular endothelial responses to altered shear stress: pathologic implications for atherosclerosis. Ann Med 41, 19-28.
20. Fuster, J. J., Fernandez, P., Gonzalez-Navarro, H., Silvestre, C., Nabah, Y. N. and Andres, V. (2010). Control of cell proliferation in atherosclerosis: insights from animal models and human studies. Cardiovasc Res 86, 254-264.
21. Lundberg, A. S. and Weinberg, R. A. (1998). Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol Cell Biol 18, 753-761.
22. Golias, C. H., Charalabopoulos, A. and Charalabopoulos, K. (2004). Cell proliferation and cell cycle control: a mini review. Int J Clin Pract 58, 1134-1141.
23. Vidal, A. and Koff, A. (2000). Cell-cycle inhibitors: three families united by a common cause. Gene 247, 1-15.
24. Chang, S. F., Chang, T. K., Peng, H. H., Yeh, Y. T., Lee, D. Y., Yeh, C. R., Zhou, J., Cheng, C. K., Chang, C. A. and Chiu, J. J. (2009). BMP-4 induction of arrest and differentiation of osteoblast-like cells via p21 CIP1 and p27 KIP1 regulation. Mol Endocrinol 23, 1827-1838.
25. Schwartz, S. M., Gajdusek, C. M., Reidy, M. A., Selden, S. C., 3rd and Haudenschild, C. C. (1980). Maintenance of integrity in aortic endothelium. Fed Proc 39, 2618-2625.
26. Curcio, A., Torella, D. and Indolfi, C. (2011). Mechanisms of smooth muscle cell proliferation and endothelial regeneration after vascular injury and stenting: approach to therapy. Circ J 75, 1287-1296.
27. Dzau, V. J., Braun-Dullaeus, R. C. and Sedding, D. G. (2002). Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med 8, 1249-1256.
28. Perrotta, I. (2011). Ultrastructural Features of Human Atherosclerosis. Ultrastruct Pathol.
29. Ross, R. (1995). Cell biology of atherosclerosis. Annu Rev Physiol 57, 791-804.
30. Raines, E. W., Koyama, H. and Carragher, N. O. (2000). The extracellular matrix dynamically regulates smooth muscle cell responsiveness to PDGF. Ann N Y Acad Sci 902, 39-51; discussion 51-32.
31. Majack, R. A., Grieshaber, N. A., Cook, C. L., Weiser, M. C., McFall, R. C., Grieshaber, S. S., Reidy, M. A. and Reilly, C. F. (1996). Smooth muscle cells isolated from the neointima after vascular injury exhibit altered responses to platelet-derived growth factor and other stimuli. J Cell Physiol 167, 106-112.
32. Fiaccadori, E., Gonzi, G., Zambrelli, P. and Tortorella, G. (1996). Cardiac arrhythmias during central venous catheter procedures in acute renal failure: a prospective study. J Am Soc Nephrol 7, 1079-1084.
33. Raines, E. W. and Ferri, N. (2005). Thematic review series: The immune system and atherogenesis. Cytokines affecting endothelial and smooth muscle cells in vascular disease. J Lipid Res 46, 1081-1092.
34. Koyama, H., Raines, E. W., Bornfeldt, K. E., Roberts, J. M. and Ross, R. (1996). Fibrillar collagen inhibits arterial smooth muscle proliferation through regulation of Cdk2 inhibitors. Cell 87, 1069-1078.
35. Chen, C. N., Li, Y. S., Yeh, Y. T., Lee, P. L., Usami, S., Chien, S. and Chiu, J. J. (2006). Synergistic roles of platelet-derived growth factor-BB and interleukin-1beta in phenotypic modulation of human aortic smooth muscle cells. Proc Natl Acad Sci U S A 103, 2665-2670.
36. Perumal, S., Antipova, O. and Orgel, J. P. (2008). Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis. Proc Natl Acad Sci U S A 105, 2824-2829.
37. Sukhova, G. K., Schonbeck, U., Rabkin, E., Schoen, F. J., Poole, A. R., Billinghurst, R. C. and Libby, P. (1999). Evidence for increased collagenolysis by interstitial collagenases-1 and -3 in vulnerable human atheromatous plaques. Circulation 99, 2503-2509.
38. Herman, M. P., Sukhova, G. K., Libby, P., Gerdes, N., Tang, N., Horton, D. B., Kilbride, M., Breitbart, R. E., Chun, M. and Schonbeck, U. (2001). Expression of neutrophil collagenase (matrix metalloproteinase-8) in human atheroma: a novel collagenolytic pathway suggested by transcriptional profiling. Circulation 104, 1899-1904.
39. Visse, R. and Nagase, H. (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 92, 827-839.
40. Patterson, M. L., Atkinson, S. J., Knauper, V. and Murphy, G. (2001). Specific collagenolysis by gelatinase A, MMP-2, is determined by the hemopexin domain and not the fibronectin-like domain. FEBS Lett 503, 158-162.
41. Galis, Z. S., Sukhova, G. K., Lark, M. W. and Libby, P. (1994). Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94, 2493-2503.
42. Fredriksson, L., Li, H. and Eriksson, U. (2004). The PDGF family: four gene products form five dimeric isoforms. Cytokine Growth Factor Rev 15, 197-204.
43. Hart, C. E., Kraiss, L. W., Vergel, S., Gilbertson, D., Kenagy, R., Kirkman, T., Crandall, D. L., Tickle, S., Finney, H., Yarranton, G. et al. (1999). PDGFbeta receptor blockade inhibits intimal hyperplasia in the baboon. Circulation 99, 564-569.
44. Vicenova, B., Vopalensky, V., Burysek, L. and Pospisek, M. (2009). Emerging role of interleukin-1 in cardiovascular diseases. Physiol Res 58, 481-498.
45. Chamberlain, J., Evans, D., King, A., Dewberry, R., Dower, S., Crossman, D. and Francis, S. (2006). Interleukin-1beta and signaling of interleukin-1 in vascular wall and circulating cells modulates the extent of neointima formation in mice. Am J Pathol 168, 1396-1403.
46. Sata, M. and Nagai, R. (2002). Phosphatidylinositol 3-kinase: a key regulator of vascular tone? Circ Res 91, 273-275.
47. Scheid, M. P. and Woodgett, J. R. (2001). PKB/AKT: functional insights from genetic models. Nat Rev Mol Cell Biol 2, 760-768.
48. Inoki, K., Li, Y., Zhu, T., Wu, J. and Guan, K. L. (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4, 648-657.
49. Ruvinsky, I. and Meyuhas, O. (2006). Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci 31, 342-348.
50. Zhang, H., Cicchetti, G., Onda, H., Koon, H. B., Asrican, K., Bajraszewski, N., Vazquez, F., Carpenter, C. L. and Kwiatkowski, D. J. (2003). Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR. J Clin Invest 112, 1223-1233.
51. Xia, H., Nho, R. S., Kahm, J., Kleidon, J. and Henke, C. A. (2004). Focal adhesion kinase is upstream of phosphatidylinositol 3-kinase/Akt in regulating fibroblast survival in response to contraction of type I collagen matrices via a beta 1 integrin viability signaling pathway. J Biol Chem 279, 33024-33034.Infect imm
52. Chakravortty, D., Kato, Y., Sugiyama, T., Koide, N., Mu, M. M., Yoshida, T. and Yokochi, T. (2001). Inhibition of p38 mitogen-activated protein kinase augments lipopolysaccharide-induced cell proliferation in CD14-expressing Chinese hamster ovary cells. Infect Immun 69, 931-936.
53. Moro, T., Ogasawara, T., Chikuda, H., Ikeda, T., Ogata, N., Maruyama, Z., Komori, T., Hoshi, K., Chung, U. I., Nakamura, K. et al. (2005). Inhibition of Cdk6 expression through p38 MAP kinase is involved in differentiation of mouse prechondrocyte ATDC5. J Cell Physiol 204, 927-933.
54. Engel, F. B., Hsieh, P. C., Lee, R. T. and Keating, M. T. (2006). FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci U S A 103, 15546-15551.
55. Engel, F. B., Schebesta, M., Duong, M. T., Lu, G., Ren, S., Madwed, J. B., Jiang, H., Wang, Y. and Keating, M. T. (2005). p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Genes Dev 19, 1175-1187.
56. Ravanti, L., Heino, J., Lopez-Otin, C. and Kahari, V. M. (1999). Induction of collagenase-3 (MMP-13) expression in human skin fibroblasts by three-dimensional collagen is mediated by p38 mitogen-activated protein kinase. J Biol Chem 274, 2446-2455.
57. Gratton, J. P., Morales-Ruiz, M., Kureishi, Y., Fulton, D., Walsh, K. and Sessa, W. C. (2001). Akt down-regulation of p38 signaling provides a novel mechanism of vascular endothelial growth factor-mediated cytoprotection in endothelial cells. J Biol Chem 276, 30359-30365.
58. Ichii, T., Koyama, H., Tanaka, S., Kim, S., Shioi, A., Okuno, Y., Raines, E. W., Iwao, H., Otani, S. and Nishizawa, Y. (2001). Fibrillar collagen specifically regulates human vascular smooth muscle cell genes involved in cellular responses and the pericellular matrix environment. Circ Res 88, 460-467.
59. Chapados, R., Abe, K., Ihida-Stansbury, K., McKean, D., Gates, A. T., Kern, M., Merklinger, S., Elliott, J., Plant, A., Shimokawa, H. et al. (2006). ROCK controls matrix synthesis in vascular smooth muscle cells: coupling vasoconstriction to vascular remodeling. Circ Res 99, 837-844.
60. Assoian, R. K. and Klein, E. A. (2008). Growth control by intracellular tension and extracellular stiffness. Trends Cell Biol 18, 347-352.
61. McDaniel, D. P., Shaw, G. A., Elliott, J. T., Bhadriraju, K., Meuse, C., Chung, K. H. and Plant, A. L. (2007). The stiffness of collagen fibrils influences vascular smooth muscle cell phenotype. Biophys J 92, 1759-1769.
62. Spurlin, T. A., Bhadriraju, K., Chung, K. H., Tona, A. and Plant, A. L. (2009). The treatment of collagen fibrils by tissue transglutaminase to promote vascular smooth muscle cell contractile signaling. Biomaterials 30, 5486-5496.
63. Bhadriraju, K., Chung, K. H., Spurlin, T. A., Haynes, R. J., Elliott, J. T. and Plant, A. L. (2009). The relative roles of collagen adhesive receptor DDR2 activation and matrix stiffness on the downregulation of focal adhesion kinase in vascular smooth muscle cells. Biomaterials 30, 6687-6694.
64. Spyridopoulos, I. and Andres, V. (1998). Control of vascular smooth muscle and endothelial cell proliferation and its implication in cardiovascular disease. Front Biosci 3, d269-287.
65. Pober, J. S. (1988). Warner-Lambert/Parke-Davis award lecture. Cytokine-mediated activation of vascular endothelium. Physiology and pathology. Am J Pathol 133, 426-433.
66. Vanhoutte, P. M. (2010). Regeneration of the endothelium in vascular injury. Cardiovasc Drugs Ther 24, 299-303.
67. Foteinos, G., Hu, Y., Xiao, Q., Metzler, B. and Xu, Q. (2008). Rapid endothelial turnover in atherosclerosis-prone areas coincides with stem cell repair in apolipoprotein E-deficient mice. Circulation 117, 1856-1863.
68. Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1, 27-31.
69. Carmeliet, P. (2003). Angiogenesis in health and disease. Nat Med 9, 653-660.
70. Flanagan, L. A., Ju, Y. E., Marg, B., Osterfield, M. and Janmey, P. A. (2002). Neurite branching on deformable substrates. Neuroreport 13, 2411-2415.
71. Suki, B., Ito, S., Stamenovic, D., Lutchen, K. R. and Ingenito, E. P. (2005). Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces. J Appl Physiol 98, 1892-1899.
72. Last, J. A., Liliensiek, S. J., Nealey, P. F. and Murphy, C. J. (2009). Determining the mechanical properties of human corneal basement membranes with atomic force microscopy. J Struct Biol 167, 19-24.
73. Discher, D. E., Janmey, P. and Wang, Y. L. (2005). Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139-1143.
74. Discher, D. E., Mooney, D. J. and Zandstra, P. W. (2009). Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673-1677.Bio j
75. Engler, A., Bacakova, L., Newman, C., Hategan, A., Griffin, M. and Discher, D. (2004). Substrate compliance versus ligand density in cell on gel responses. Biophys J 86, 617-628.
76. Engler, A. J., Sen, S., Sweeney, H. L. and Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell 126, 677-689.
77. Stroka, K. M. and Aranda-Espinoza, H. (2011). Endothelial cell substrate stiffness influences neutrophil transmigration via myosin light chain kinase-dependent cell contraction. Blood 118, 1632-1640.
78. Gelman, S. (2008). Venous function and central venous pressure: a physiologic story. Anesthesiology 108, 735-748.
79. Matsumoto, T., Abe, H., Ohashi, T., Kato, Y. and Sato, M. (2002). Local elastic modulus of atherosclerotic lesions of rabbit thoracic aortas measured by pipette aspiration method. Physiol Meas 23, 635-648.
80. Padera, T. P., Stoll, B. R., Tooredman, J. B., Capen, D., di Tomaso, E. and Jain, R. K. (2004). Pathology: cancer cells compress intratumour vessels. Nature 427, 695.
81. Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., Reinhart-King, C. A., Margulies, S. S., Dembo, M., Boettiger, D. et al. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell 8, 241-254.
82. Zhang, X., Jiang, G., Cai, Y., Monkley, S. J., Critchley, D. R. and Sheetz, M. P. (2008). Talin depletion reveals independence of initial cell spreading from integrin activation and traction. Nat Cell Biol 10, 1062-1068.
83. Sawada, Y., Tamada, M., Dubin-Thaler, B. J., Cherniavskaya, O., Sakai, R., Tanaka, S. and Sheetz, M. P. (2006). Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127, 1015-1026.
84. Provenzano, P. P. and Keely, P. J. (2011). Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. J Cell Sci 124, 1195-1205.
85. Klein, E. A., Yin, L., Kothapalli, D., Castagnino, P., Byfield, F. J., Xu, T., Levental, I., Hawthorne, E., Janmey, P. A. and Assoian, R. K. (2009). Cell-cycle control by physiological matrix elasticity and in vivo tissue stiffening. Curr Biol 19, 1511-1518.
86. van Popele, N. M., Grobbee, D. E., Bots, M. L., Asmar, R., Topouchian, J., Reneman, R. S., Hoeks, A. P., van der Kuip, D. A., Hofman, A. and Witteman, J. C. (2001). Association between arterial stiffness and atherosclerosis: the Rotterdam Study. Stroke 32, 454-460.
87. Huynh, J., Nishimura, N., Rana, K., Peloquin, J. M., Califano, J. P., Montague, C. R., King, M. R., Schaffer, C. B. and Reinhart-King, C. A. (2011). Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration. Sci Transl Med 3, 112ra122.
88. Atabek, M. E., Kurtoglu, S., Pirgon, O. and Baykara, M. (2006). Arterial wall thickening and stiffening in children and adolescents with type 1 diabetes. Diabetes Res Clin Pract 74, 33-40.
89. Liao, D., Arnett, D. K., Tyroler, H. A., Riley, W. A., Chambless, L. E., Szklo, M. and Heiss, G. (1999). Arterial stiffness and the development of hypertension. The ARIC study. Hypertension 34, 201-206.
90. Zieman, S. J., Melenovsky, V. and Kass, D. A. (2005). Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol 25, 932-943.
91. Lopez, J. I., Kang, I., You, W. K., McDonald, D. M. and Weaver, V. M. (2011). In situ force mapping of mammary gland transformation. Integr Biol (Camb) 3, 910-921.
92. Vernon, R. B., Angello, J. C., Iruela-Arispe, M. L., Lane, T. F. and Sage, E. H. (1992). Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Lab Invest 66, 536-547.
93. Yeung, T., Georges, P. C., Flanagan, L. A., Marg, B., Ortiz, M., Funaki, M., Zahir, N., Ming, W., Weaver, V. and Janmey, P. A. (2005). Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskeleton 60, 24-34.
94. Wallace, C. S., Strike, S. A. and Truskey, G. A. (2007). Smooth muscle cell rigidity and extracellular matrix organization influence endothelial cell spreading and adhesion formation in coculture. Am J Physiol Heart Circ Physiol 293, H1978-1986.
95. Wallace, C. S. and Truskey, G. A. (2010). Direct-contact co-culture between smooth muscle and endothelial cells inhibits TNF-alpha-mediated endothelial cell activation. Am J Physiol Heart Circ Physiol 299, H338-346.
96. Ghosh, K., Thodeti, C. K., Dudley, A. C., Mammoto, A., Klagsbrun, M. and Ingber, D. E. (2008). Tumor-derived endothelial cells exhibit aberrant Rho-mediated mechanosensing and abnormal angiogenesis in vitro. Proc Natl Acad Sci U S A 105, 11305-11310.
97. Nemoto, S. and Finkel, T. (2002). Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science 295, 2450-2452.
98. Gilchrist, C. L., Darling, E. M., Chen, J. and Setton, L. A. (2011). Extracellular matrix ligand and stiffness modulate immature nucleus pulposus cell-cell interactions. PLoS One 6, e27170.
99. Wang, Y. L. and Pelham, R. J., Jr. (1998). Preparation of a flexible, porous polyacrylamide substrate for mechanical studies of cultured cells. Methods Enzymol 298, 489-496.
100. Mammoto, A., Huang, S., Moore, K., Oh, P. and Ingber, D. E. (2004). Role of RhoA, mDia, and ROCK in cell shape-dependent control of the Skp2-p27kip1 pathway and the G1/S transition. J Biol Chem 279, 26323-26330.
101. Amano, M., Chihara, K., Kimura, K., Fukata, Y., Nakamura, N., Matsuura, Y. and Kaibuchi, K. (1997). Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 275, 1308-1311.
102. Bos, J. L., Rehmann, H. and Wittinghofer, A. (2007). GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865-877.
103. Gilden, J. and Krummel, M. F. (2010). Control of cortical rigidity by the cytoskeleton: emerging roles for septins. Cytoskeleton (Hoboken) 67, 477-486.
104. Nagata, K. and Inagaki, M. (2005). Cytoskeletal modification of Rho guanine nucleotide exchange factor activity: identification of a Rho guanine nucleotide exchange factor as a binding partner for Sept9b, a mammalian septin. Oncogene 24, 65-76.
105. Nagata, K., Asano, T., Nozawa, Y. and Inagaki, M. (2004). Biochemical and cell biological analyses of a mammalian septin complex, Sept7/9b/11. J Biol Chem 279, 55895-55904.
106. Jiang, G., Huang, A. H., Cai, Y., Tanase, M. and Sheetz, M. P. (2006). Rigidity sensing at the leading edge through alphavbeta3 integrins and RPTPalpha. Biophys J 90, 1804-1809.
107. Matthews, B. D., Overby, D. R., Mannix, R. and Ingber, D. E. (2006). Cellular adaptation to mechanical stress: role of integrins, Rho, cytoskeletal tension and mechanosensitive ion channels. J Cell Sci 119, 508-518.
108. Huveneers, S. and Danen, E. H. (2009). Adhesion signaling - crosstalk between integrins, Src and Rho. J Cell Sci 122, 1059-1069.
109. Conte, M. S., Bandyk, D. F., Clowes, A. W., Moneta, G. L., Seely, L., Lorenz, T. J., Namini, H., Hamdan, A. D., Roddy, S. P., Belkin, M. et al. (2006). Results of PREVENT III: a multicenter, randomized trial of edifoligide for the prevention of vein graft failure in lower extremity bypass surgery. J Vasc Surg 43, 742-751; discussion 751.
110. Alexander, J. H., Hafley, G., Harrington, R. A., Peterson, E. D., Ferguson, T. B., Jr., Lorenz, T. J., Goyal, A., Gibson, M., Mack, M. J., Gennevois, D. et al. (2005). Efficacy and safety of edifoligide, an E2F transcription factor decoy, for prevention of vein graft failure following coronary artery bypass graft surgery: PREVENT IV: a randomized controlled trial. JAMA 294, 2446-2454.
111. Hoel, A. W. and Conte, M. S. (2007). Edifoligide: a transcription factor decoy to modulate smooth muscle cell proliferation in vein bypass. Cardiovasc Drug Rev 25, 221-234.
112. Attwooll, C., Lazzerini Denchi, E. and Helin, K. (2004). The E2F family: specific functions and overlapping interests. EMBO J 23, 4709-4716.
113. Giangrande, P. H., Zhang, J., Tanner, A., Eckhart, A. D., Rempel, R. E., Andrechek, E. R., Layzer, J. M., Keys, J. R., Hagen, P. O., Nevins, J. R. et al. (2007). Distinct roles of E2F proteins in vascular smooth muscle cell proliferation and intimal hyperplasia. Proc Natl Acad Sci U S A 104, 12988-12993.
114. Rajendran, M., Thomes, P., Zhang, L., Veeramani, S. and Lin, M. F. (2010). p66Shc--a longevity redox protein in human prostate cancer progression and metastasis : p66Shc in cancer progression and metastasis. Cancer Metastasis Rev 29, 207-222.
115. Pinton, P., Rimessi, A., Marchi, S., Orsini, F., Migliaccio, E., Giorgio, M., Contursi, C., Minucci, S., Mantovani, F., Wieckowski, M. R. et al. (2007). Protein kinase C beta and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science 315, 659-663.
116. Khanday, F. A., Yamamori, T., Mattagajasingh, I., Zhang, Z., Bugayenko, A., Naqvi, A., Santhanam, L., Nabi, N., Kasuno, K., Day, B. W. et al. (2006). Rac1 leads to phosphorylation-dependent increase in stability of the p66shc adaptor protein: role in Rac1-induced oxidative stress. Mol Biol Cell 17, 122-129.
117. Haga, S., Morita, N., Irani, K., Fujiyoshi, M., Ogino, T., Ozawa, T. and Ozaki, M. (2010). p66(Shc) has a pivotal function in impaired liver regeneration in aged mice by a redox-dependent mechanism. Lab Invest 90, 1718-1726.
118. Guo, J., Gertsberg, Z., Ozgen, N. and Steinberg, S. F. (2009). p66Shc links alpha1-adrenergic receptors to a reactive oxygen species-dependent AKT-FOXO3A phosphorylation pathway in cardiomyocytes. Circ Res 104, 660-669.
119. Migliaccio, E., Giorgio, M., Mele, S., Pelicci, G., Reboldi, P., Pandolfi, P. P., Lanfrancone, L. and Pelicci, P. G. (1999). The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402, 309-313.
120. Martin-Padura, I., de Nigris, F., Migliaccio, E., Mansueto, G., Minardi, S., Rienzo, M., Lerman, L. O., Stendardo, M., Giorgio, M., De Rosa, G. et al. (2008). p66Shc deletion confers vascular protection in advanced atherosclerosis in hypercholesterolemic apolipoprotein E knockout mice. Endothelium 15, 276-287.
121. Lee, R. T., Richardson, S. G., Loree, H. M., Grodzinsky, A. J., Gharib, S. A., Schoen, F. J. and Pandian, N. (1992). Prediction of mechanical properties of human atherosclerotic tissue by high-frequency intravascular ultrasound imaging. An in vitro study. Arterioscler Thromb 12, 1-5.
122. Tilghman, R. W., Cowan, C. R., Mih, J. D., Koryakina, Y., Gioeli, D., Slack-Davis, J. K., Blackman, B. R., Tschumperlin, D. J. and Parsons, J. T. (2010). Matrix rigidity regulates cancer cell growth and cellular phenotype. PLoS One 5, e12905.
123. Solon, J., Levental, I., Sengupta, K., Georges, P. C. and Janmey, P. A. (2007). Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys J 93, 4453-4461.
124. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. and Chen, C. S. (2004). Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6, 483-495.
125. Kostic, A., Lynch, C. D. and Sheetz, M. P. (2009). Differential matrix rigidity response in breast cancer cell lines correlates with the tissue tropism. PLoS One 4, e6361.
126. Peng, F., Zhang, B., Ingram, A. J., Gao, B., Zhang, Y. and Krepinsky, J. C. (2010). Mechanical stretch-induced RhoA activation is mediated by the RhoGEF Vav2 in mesangial cells. Cell Signal 22, 34-40.
127. Peterson, E. A. and Petty, E. M. (2010). Conquering the complex world of human septins: implications for health and disease. Clin Genet 77, 511-524.
128. Spiliotis, E. T. and Nelson, W. J. (2006). Here come the septins: novel polymers that coordinate intracellular functions and organization. J Cell Sci 119, 4-10.
129. Roca-Cusachs, P., Gauthier, N. C., Del Rio, A. and Sheetz, M. P. (2009). Clustering of alpha(5)beta(1) integrins determines adhesion strength whereas alpha(v)beta(3) and talin enable mechanotransduction. Proc Natl Acad Sci U S A 106, 16245-16250.
130. White, D. P., Caswell, P. T. and Norman, J. C. (2007). alpha v beta3 and alpha5beta1 integrin recycling pathways dictate downstream Rho kinase signaling to regulate persistent cell migration. J Cell Biol 177, 515-525.
131. Wei, W. C., Lin, H. H., Shen, M. R. and Tang, M. J. (2008). Mechanosensing machinery for cells under low substratum rigidity. Am J Physiol Cell Physiol 295, C1579-1589.
132. Katsumi, A., Orr, A. W., Tzima, E. and Schwartz, M. A. (2004). Integrins in mechanotransduction. J Biol Chem 279, 12001-12004.
133. Peng, X., Huang, J., Xiong, C. and Fang, J. (2012). Cell adhesion nucleation regulated by substrate stiffness: a Monte Carlo study. J Biomech 45, 116-122.
134. Stupack, D. G., Puente, X. S., Boutsaboualoy, S., Storgard, C. M. and Cheresh, D. A. (2001). Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J Cell Biol 155, 459-470.
135. Brooks, P. C., Montgomery, A. M., Rosenfeld, M., Reisfeld, R. A., Hu, T., Klier, G. and Cheresh, D. A. (1994). Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79, 1157-1164.
136. Gilchrist, C. L., Darling, E. M., Chen, J. and Setton, L. A. (2011). Extracellular matrix ligand and stiffness modulate immature nucleus pulposus cell-cell interactions. PLoS One 6, e27170.
137. Noda, Y., Yamagishi, S., Matsui, T., Ueda, S., Jinnouchi, Y., Hirai, Y. and Imaizumi, T. (2010). The p66shc gene expression in peripheral blood monocytes is increased in patients with coronary artery disease. Clin Cardiol 33, 548-552.
138. Franzeck, F. C., Hof, D., Spescha R. D., Hasun, M., Akhmedov, A., Steffel, J., Shi, Y., Cosentino, F., Tanner, F. C., von Eckardstein, A. et al. (2012). Expression of the aging gene p66Shc is increased in peripheral blood monocytes of patients with acute coronary syndrome but not with stable coronary artery disease. Atherosclerosis 220, 282-286.
139. Camici, G.G., Cosentino, F., Tanner, F. C. and Luscher, T. F. (2008). The role of p66Shc deletion in age-associated arterial dysfunction and disease states. J Appl Physiol 105, 1628-1631.
140. Graiani, G., Lagrasta, C., Migliaccio, E., Spillmann, F., Meloni, M., Madeddu, P., Quaini, F., Padura, I. M., Lanfrancone, L., Pelicci, P. et al. (2005). Genetic deletion of the p66Shc adaptor protein protects from angiotensin II-induced myocardial damage. Hypertension 46, 433-440.
141. Oshikawa, J., Kim, S. J., Furuta, E., Caliceti, C., Chen, G. F., McKinney, R. D., Kuhr, F., Levitan, I., Fukai, T. and Ushio-Fukai M. (2012). Novel role of p66Shc in ROS-dependent VEGF signaling and angiogenesis in endothelial cells. Am J Physiol Heart Circ Physiol 302, H724-732.
142. Zhou, S., Chen, H. Z., Wan, Y. Z., Zhang, Q. J., Wei, Y. S., Huang, S., Liu, J. J., Lu, Y. B., Zhang, Z. Q., Yang, R. F. et al. (2011). Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction. Circ Res 109, 639-648.
143. Kumar, S., Rajendran, M., Alam, S. M., Lin, F. F., Cheng, P. W. and Lin, M. F. (2011). Steroids up-regulate p66Shc longevity protein in growth regulation by inhibiting its ubiquitination. PLoS One 6, e15942.
144. Pickart, C. M. (2001). Mechanisms underlying ubiquitination. Annu Rev Biochem 70, 503-533.
145. Nijman, S. M., Luna-Vargas, M. P., Velds, A., Brummelkamp, T. R., Dirac, A. M., Sixma, T. K. and Bernards, R. (2005). A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773-786.
146. Demasi, M. and Laurindo, F. R. (2012). Physiological and pathological role of the ubiquitin-proteasome system in the vascular smooth muscle cell. Cardiovasc Res 95, 183-193.