簡易檢索 / 詳目顯示

研究生: 黃柏嘉
Po-Chia Huang
論文名稱: 三維統計影像重建法在高解析度小動物Pinhole SPECT之研究
Three Dimensional Statistical Image Reconstruction for High Resolution Small Animal Pinhole SPECT
指導教授: 許靖涵
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 87
中文關鍵詞: 針孔單光子發射斷層掃描解析度
外文關鍵詞: pinhole, single photon emission computed tomography, spatial resolution
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單光子發射斷層掃描是將放射性藥物注射入生物體,並利用各種組織器官對於藥物的吸收反應程度不同,而對組織器官進行功能性的分析。將針孔成像原理與單光子發射斷層掃描加以結合,利用針孔成像的放大原理,可以得到高解析度影像。過去在臨床上使用在針孔單光子發射斷層掃描的影像重建方法是濾波反投影法(Filtered Back Projection, FBP),濾波反投影法雖是臨床上普遍使用的影像重建法,但是其本身的特性限制了重建影像的品質,會在重建影像中產生放射狀假影。本研究使用以統計為基礎的光子偵收模型,對於針孔成像的幾何特性進行分析,再配合硬體設計上的旋轉,用疊代式影像重建演算法(Iterative Image Reconstruction Algorithm)進行影像重建,希望在具有理論基礎的成像系統與演算法的配合下,以相同的偵檢條件,得到高品質的影像。實驗結果顯示,將統計成像原理運用在針孔的放大系統中,重建影像無論在位置、影像值、均勻性與邊界保留上,皆能順利的重建出全三維的高解析度高品質影像。對於需要高品質影像的小型動物實驗而言,本研究結果提供了適用於進行定性與定量分析的影像。


    Pinhole imaging can produce high-resolution image results due to its geometric characteristics. Combined with a single photon emission computed tomography (SPECT), pinhole SPECT becomes a powerful functional imaging tool for small animals or in vivo objects. Conventionally, SPECT imaging used filtered back projection (FBP) method for image reconstruction. Although the FBP method is frequently used in clinics, the reconstructed images with FBP still have some unfavorable problems such as artifacts. In this work, we describe a fully three-dimensional statistical model for SPECT data, and develop a fast iterative image reconstruction algorithm. We combine the real pinhole geometry and statistical image reconstruction algorithm to obtain high quality image. The results in simulation experiments show that the reconstructed images have nice properties in maintaining accuracy of tracer uptake, image uniformity, and positions of point source and edges. The proposed pinhole SPECT imaging method can produce high quality three-dimensional image for the small animal studies.

    第1章 序論 第2章 針孔單光子發射斷層掃描的原理 第2-1節 單光子發射斷層掃描 第2-2節 針孔準直儀 第2-3節 空間解析度 第2-4節 其他針孔單光子發射斷層掃描特性 第2-4-1節 光子相關特性 第2-4-2節 幾何特性 第2-5節 3D Pinhole SPECT 第3章 統計模型建立與演算法 第3-1節 光子的發射與接收 第3-2節 相似度函數 第3-3節 最大相似度與均值最大化演算法 第3-3-1節 最大化過程 第3-3-2節 最大相似度與均值最大化演算法 第3-4節 相似度與均值最大化演算法的特性 第3-5節 序列子集與均值最大化演算法 第3-6節 序列子集與均值最大化演算法與雜訊影響 第3-7節 兩種演算法的正向投影與反向投影 第3-7-1節 最大相似度與均值最大化演算法 第3-7-2節 序列子集均值最大化演算法 第4章 機率矩陣的建立 第4-1節 機率矩陣 第4-2節 距離反比的機率計算 第4-2-1節 光子偵收 第4-2-2節 一維偵檢器排列 第4-2-3節二維的偵檢器排列 第4-3節 二維空間座標軸旋轉之座標轉換 第4-4節 三維空間中座標定義與投影 第4-4-1節 座標定義 第4-4-2節 旋轉的選擇 第4-4-3節 三為空間座標旋轉的投影與機率計算 第4-5節 有限小孔徑的機率計算 第4-5-1節 有限小孔徑 第4-5-2節 放大倍率與偵檢器需求 第5章 機率矩陣的簡化與影響 第5-1節 儲存空間與非零值儲存 第5-2節 四倍對稱 第5-3節 四倍對稱與OSEM正向投影 第5-4節 正弦圖排列改變之修正第 第6章 實驗設計 第6-1節 硬體參數 第6-2節 模擬假體 第6-2-1節 點射源 第6-2-2節 線射源 第6-2-3節 均勻性射源 第6-2-4節 非均勻性射源 第6-2-5節 影像值設定 第6-3節 影像重建 第6-3-1節 機率矩陣與正向投影 第6-3-2節 模擬正弦圖的影像重建 第6-3-3節 以蒙地卡羅模擬光子特性之研究 第6-3-4節 收斂與疊代演算停止 第7章 結果與討論 第7-1節 驗證實驗 第7-1-1節 正向投影 第7-1-2節 四倍對稱與MLEM 第7-1-3節 OSEM 第7-2節 理想狀況下重建影像與系統品質實驗 第7-2-1節 含有背景值的點射源影像重建 第7-2-2節 三維均向性與空間解析度 第7-2-3節 重建影像均勻性 第7-2-4節 非均勻性影像重建結果 第7-3節 有限小孔徑機率矩陣重建結果 第7-3-1節 使用面積定義機率的合理性 第7-3-2節 點射源的擴散效應與空間解析度 第7-3-3節 球狀射源重建影像的均勻性 第7-3-4節 非均勻性射源的邊界 第7-4節 蒙地卡羅模擬實驗結果 第7-4-1節 25個點射源的重建結果 第7-4-2節 線射源 第7-4-3節 球狀射源 第7-5節 忽略有限小孔徑對影像造成的影響 第7-5-1節 點射源的位置偏移 第7-5-2節 球狀射源的影像扭曲 第7-6節 綜合討論 第8章 結論與未來方向

    1.J. R. Mallard , F. Inst. P. , M. J. Myers , B. Sc. , “The Performance of a Gamma Camera for the Visualization of Radioactive Isotopes in vivo”, Phys. Med. Biol. ,Vol. 8 , No. 2 ,1963.

    2.D. Paix , “Pinhole Imaging of Gamma Rays”, Phys. Med . Biol. , Vol. 12 , No. 4 , 1967.

    3.L. A. Shepp , Y. Vardi , “Maximum Likelihood Reconstruction for Emission Tomography” , IEEE Transaction on medical imaging , Vol. MI-1 , No. 2 , October 1982.

    4.G. T. Gullberg , B. M. W. Tsui , C. R. Crawford , J. G. Ballard , J. T. Haugius , “Estimation of Geometrical Parameters and Collimator Evaluation for Con Beam Tomography ” , Med. Phys. Vol. 17 , No.2 , 1990.

    5.J. Palmer, P. Wollmer, “Pinhole emission computed tomography: method an experimental evaluation”, Phys. Med. Biol., Vol. 35, pp. 339-350, 1990

    6.H. M. Hudson and R S. Larkin, “ Accelerated image reconstruction using ordered subsets of projection data, ” IEEE Transactions on Medical Imaging, Vol. 13, No. 4, pp.601-609, Dec. 1994

    7.R. J. Jaszczak, J. Li, H. Wang, W. R. Zalutsky, R. E. Coleman, “Pinhole collimation for ultra-high-resolution, small field-of view SPECT”, Phys. Med. Biol., Vol. 39, pp. 425-437, 1994

    8.J. Li, R. J. Jaszczak, K. L. Greer, R. E. Coleman, “A filtered backprojection algorithm for pinhole SPECT with a displaced centre of rotation”, Phys. Med. Biol., Vol. 39,pp. 165-176, 1994

    9.S. Alenius, U. Ruotsalainen, “Bayesian image reconstruction for emission tomography based on median root prior”, Eur. J. Nucl. Med., Vol. 24, pp. 256-265, 1997

    10.M. F. Smith , R. J. Jaszczak , “An Analytic of Pinhole Aperture penetration for 3D Pinhole SPECT Image Reconstruction” , Phys. Med. Biol. , Vol. 43 , 1998

    11.K. Ogawa, T. Kawade, K. Nakamura, A. Kubo , T. Ichihara, “Ultra high resolution pinhole SPECT for small animal studies”, IEEE Transaction on nuclear science, Vol. 45, No. 6, pp. 3122-3126, 1998

    12.N. Schramm, A. Wirrwar, F. Sonneberg, H. Halling, “Compact high resolution detector for small animal SPECT”, IEEE Transaction on Nuclear Science, Vol. 47, No. 3, pp. 1163-1167, 2000

    13.M.C.Wu, H.R.Tang, D.W. Gao, A. Ido, J. W. O’Connell, B.H. Hasegawa, M. W. Dae, ”ECG-Gated pinhole SPECT in millimeter spatial resolution”, IEEE Transaction on Nuclear Science, Vol. 47, No. 3, 2000.

    14.L. R. MacDonald , B.E. Patt , J. S. Iwanczyk , B. M. W. Tsui , Y. Wang , E. C. Frey , D. E. Wesswll , P. A. Acton , H. K. Kung , “Pinhole SPECT of Mice Using LumaGem Gamma Camera” , IEEE Tran. Nucl. Sci. , Vol. 48 , No. 3 , June 2001.

    15.Seret, M. Defrise, D. Blocklet, “ Pinhole SPET with a tilted detector and OS-EM reconstruction: phantom studies and clinical applications”, Eur. J. Nucl. Med., Vol. 28, pp. 1836-1841, 2001

    16.M. C. Wu , B. H. Hasegawa , “Performance Evaluation of a Pinhole SPECT System for Myidardial Perfusion Imaging of Mice” , Med. Phys. Vol. 29 No. 12 , December 2002.

    17.T. Y. Song , Y. Choi , Y. H. Chung , J. H. Jung , Y. S. Choe , K. H. Lee , S. E. Kim , B. T. Kim , “Optimization of Pinhole Collimator for Small Animal SPECT Using Monte Carlo Simulation” , IEEE.

    18.S. D. Metzler , J. E. Bowsher , K. L. Bgeer , R. J. Jaszczak , “Analytic Determination of The Pinhole Collimator’s Point-Spread Function and RMS Resolution with Penetration” , IEEE Transaction on medical imaging , Vol. 21 , No. 8 , August 2002.

    19.A. Sohlberg , . T. Kuikka , U. Ruoysalainen , “Pinhole Single-Photon Emission Tomography Reconstruction Based on Median Root Prior ” , European Journal of Nuclear Medicine and Molecular Imaging , Vol. 30 , No. 2 , February 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE