研究生: |
蔡岡橋 Tsai, Kang-Chiao |
---|---|
論文名稱: |
新穎醣胺多醣結合胜肽於腫瘤標靶與抑制之功能分析 Functional Characterization of A Novel Glycosaminoglycan Binding Peptide on Tumor Targeting and Suppression |
指導教授: |
張大慈
Chang, Dah-Tsyr |
口試委員: |
莊永仁
周裕珽 張文祥 郭靜娟 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 89 |
中文關鍵詞: | 胜肽 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細胞表面的醣胺多醣(glycosaminoglycans)與趨化素(chemokines)、凝血素(thrombins)及生長因子間交互作用被視為與增殖(proliferation)、黏附(adhesion)、移行(migration)及血管新生(angiogenesis)等癌化過程有關。本實驗室先前於人類嗜酸性白血球陽離子蛋白(human eosinophil cationic protein、hECP)中核心硫酸乙醯肝素結合區域(heparan sulfate binding motif)發展出一段無毒性醣胺多醣結合胜肽(glycosaminoglycan binding peptide、GBP)。本研究利用酵素連結免疫分析(enzyme-linked immunosorbent assay、ELISA)證實帶有綠色螢光重組蛋白的GBP (eGFP-GBP)具有結合至老鼠直腸癌(CT-26)及人類肺癌(A549)上皮細胞表面的能力。進一步利用CT-26皮下同種移植之腫瘤小鼠模式研究eGFP-GBP於活體循環組織特異性,免疫化學染色(immunohistochemistry、IHC)結果顯示eGFP-GBP主要標的至CT-26腫瘤、肝臟以及腎臟;在同一動物模式中,普魯士染色(Prussian Blue staining)結果顯示帶有GBP的磁性奈米粒子(GBP-conjugated magnetic nanoparticle、MNP-GBP)亦有標的至CT-26腫瘤的能力。此外,本研究利用體外移行實驗(in vitro migration assay)發現GBP具有抑制CT-26和A549癌細胞以及人類臍帶靜脈內皮細胞(HUVEC)的移行能力。透過活體動物實驗分析GBP對血管新生及腫瘤生長的影響,結果顯示GBP能有效抑制斑馬魚腸下靜脈血管(subintestinal vessel、SIV)的生長,亦能在A549皮下異種移植之腫瘤小鼠模式中抑制腫瘤生長。本研究展現GBP不但具有標靶表皮癌細胞的能力,亦有抑制癌細胞惡化的潛力。因此,GBP具有潛力應用於臨床轉譯醫學,能用於開發癌症用藥的新配方。
Cell surface glycosaminoglycans (GAGs), which play diverse roles in cancer progression to regulate proliferation, adhesion, migration, and angiogenesis, interact with molecules including chemokines, thrombins and growth factors. We have recently identified a non-cytotoxic and sulfated GAG-binding peptide (GBP) derived from core heparan sulfate binding motif of human eosinophil cationic protein (hECP). Recombinant enhanced green fluorescent protein-fused GBP (eGFP-GBP) bound to mouse colon (CT-26) and human lung (A549) epithelial cancer cells in a dose-dependent manner determined by enzyme-linked immunosorbent assay (ELISA). Through in vivo tissue targeting experiment carried out in subcutaneous CT-26 syngeneic tumor mouse model (Balb/c), eGFP-GBP signals were detected in subcutaneous CT-26 tumor site, liver and kidney by immunohistochemistry (IHC) staining. In addition, GBP-conjugated magnetic nanoparticle (MNP-GBP) signals were also observed in subcutaneous CT-26 tumor site using Prussian blue staining. Furthermore, in vitro migration assay indicated that the migration activities of CT-26 and A549 cell and human umbilical vein endothelial cell (HUVEC) were significantly inhibited upon treatment of GBP. Moreover, GBP inhibited the growth of subintestinal vessel (SIV) in zebrafish and suppressed tumor growth in subcutaneous A549 xenogeneic tumor mouse model (SCID). Taken together, this study demonstrated that GBP possessed not only epithelial tumor targeting activity but also anti-migration and anti-angiogenesis activities. Thus, further development of GBP as a reagent for application in translational medicine is feasible.
1. Prydz K, Dalen KT (2000) Synthesis and sorting of proteoglycans. J Cell Sci 113 Pt 2: 193-205.
2. Tumova S, Woods A, Couchman JR (2000) Heparan sulfate proteoglycans on the cell surface: versatile coordinators of cellular functions. Int J Biochem Cell Biol 32: 269-288.
3. Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, et al. (1999) Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 68: 729-777.
4. Hacker U, Nybakken K, Perrimon N (2005) Heparan sulphate proteoglycans: the sweet side of development. Nat Rev Mol Cell Biol 6: 530-541.
5. Madonna R, De Caterina R (2014) Potential roles of vessel wall heparan sulfate proteoglycans in atherosclerosis. Vascul Pharmacol 60: 49-51.
6. de Ruijter J, Ijlst L, Kulik W, van Lenthe H, Wagemans T, et al. (2013) Heparan sulfate derived disaccharides in plasma and total urinary excretion of glycosaminoglycans correlate with disease severity in Sanfilippo disease. J Inherit Metab Dis 36: 271-279.
7. Day RM, Hao X, Ilyas M, Daszak P, Talbot IC, et al. (1999) Changes in the expression of syndecan-1 in the colorectal adenoma-carcinoma sequence. Virchows Arch 434: 121-125.
8. Kumar-Singh S, Jacobs W, Dhaene K, Weyn B, Bogers J, et al. (1998) Syndecan-1 expression in malignant mesothelioma: correlation with cell differentiation, WT1 expression, and clinical outcome. J Pathol 186: 300-305.
9. Contreras HR, Fabre M, Granes F, Casaroli-Marano R, Rocamora N, et al. (2001) Syndecan-2 expression in colorectal cancer-derived HT-29 M6 epithelial cells induces a migratory phenotype. Biochem Biophys Res Commun 286: 742-751.
10. Rapraeger AC, Krufka A, Olwin BB (1991) Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252: 1705-1708.
11. Bernfield M, Kokenyesi R, Kato M, Hinkes MT, Spring J, et al. (1992) Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu Rev Cell Biol 8: 365-393.
12. Vuoriluoto K, Jokinen J, Kallio K, Salmivirta M, Heino J, et al. (2008) Syndecan-1 supports integrin alpha2beta1-mediated adhesion to collagen. Exp Cell Res 314: 3369-3381.
13. Sasisekharan R, Shriver Z, Venkataraman G, Narayanasami U (2002) Roles of heparan-sulphate glycosaminoglycans in cancer. Nat Rev Cancer 2: 521-528.
14. Knelson EH, Nee JC, Blobe GC (2014) Heparan sulfate signaling in cancer. Trends Biochem Sci 39: 277-288.
15. Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446: 1030-1037.
16. Jin L, Abrahams JP, Skinner R, Petitou M, Pike RN, et al. (1997) The anticoagulant activation of antithrombin by heparin. Proc Natl Acad Sci U S A 94: 14683-14688.
17. Petitou M, Imberty A, Duchaussoy P, Driguez PA, Ceccato ML, et al. (2001) Experimental proof for the structure of a thrombin-inhibiting heparin molecule. Chemistry 7: 858-873.
18. Karumanchi SA, Jha V, Ramchandran R, Karihaloo A, Tsiokas L, et al. (2001) Cell surface glypicans are low-affinity endostatin receptors. Mol Cell 7: 811-822.
19. Anton L, Merrill DC, Neves LA, Brosnihan KB (2007) Angiotensin-(1-7) inhibits in vitro endothelial cell tube formation in human umbilical vein endothelial cells through the AT(1-7) receptor. Endocrine 32: 212-218.
20. Fuster MM, Wang L, Castagnola J, Sikora L, Reddi K, et al. (2007) Genetic alteration of endothelial heparan sulfate selectively inhibits tumor angiogenesis. J Cell Biol 177: 539-549.
21. Bhadada SV, Goyal BR, Patel MM (2011) Angiogenic targets for potential disorders. Fundam Clin Pharmacol 25: 29-47.
22. Koopmann W, Ediriwickrema C, Krangel MS (1999) Structure and function of the glycosaminoglycan binding site of chemokine macrophage-inflammatory protein-1 beta. J Immunol 163: 2120-2127.
23. Ma YQ, Geng JG (2000) Heparan sulfate-like proteoglycans mediate adhesion of human malignant melanoma A375 cells to P-selectin under flow. J Immunol 165: 558-565.
24. Utani A, Nomizu M, Matsuura H, Kato K, Kobayashi T, et al. (2001) A unique sequence of the laminin alpha 3 G domain binds to heparin and promotes cell adhesion through syndecan-2 and -4. J Biol Chem 276: 28779-28788.
25. Lundmark K, Tran PK, Kinsella MG, Clowes AW, Wight TN, et al. (2001) Perlecan inhibits smooth muscle cell adhesion to fibronectin: role of heparan sulfate. J Cell Physiol 188: 67-74.
26. Vlodavsky I, Goldshmidt O, Zcharia E, Atzmon R, Rangini-Guatta Z, et al. (2002) Mammalian heparanase: involvement in cancer metastasis, angiogenesis and normal development. Semin Cancer Biol 12: 121-129.
27. Theocharis AD, Skandalis SS, Tzanakakis GN, Karamanos NK (2010) Proteoglycans in health and disease: novel roles for proteoglycans in malignancy and their pharmacological targeting. FEBS J 277: 3904-3923.
28. Hirabayashi K, Numa F, Suminami Y, Murakami A, Murakami T, et al. (1998) Altered proliferative and metastatic potential associated with increased expression of syndecan-1. Tumour Biol 19: 454-463.
29. Barbareschi M, Maisonneuve P, Aldovini D, Cangi MG, Pecciarini L, et al. (2003) High syndecan-1 expression in breast carcinoma is related to an aggressive phenotype and to poorer prognosis. Cancer 98: 474-483.
30. Park H, Kim Y, Lim Y, Han I, Oh ES (2002) Syndecan-2 mediates adhesion and proliferation of colon carcinoma cells. J Biol Chem 277: 29730-29736.
31. Matsuda K, Maruyama H, Guo F, Kleeff J, Itakura J, et al. (2001) Glypican-1 is overexpressed in human breast cancer and modulates the mitogenic effects of multiple heparin-binding growth factors in breast cancer cells. Cancer Res 61: 5562-5569.
32. Li Y, Miao L, Cai H, Ding J, Xiao Y, et al. (2013) The overexpression of glypican-5 promotes cancer cell migration and is associated with shorter overall survival in non-small cell lung cancer. Oncol Lett 6: 1565-1572.
33. Salmivirta M, Safaiyan F, Prydz K, Andresen MS, Aryan M, et al. (1998) Differentiation-associated modulation of heparan sulfate structure and function in CaCo-2 colon carcinoma cells. Glycobiology 8: 1029-1036.
34. Cohen E, Doweck I, Naroditsky I, Ben-Izhak O, Kremer R, et al. (2008) Heparanase is overexpressed in lung cancer and correlates inversely with patient survival. Cancer 113: 1004-1011.
35. Horai T, Nakamura N, Tateishi R, Hattori S (1981) Glycosaminoglycans in human lung cancer. Cancer 48: 2016-2021.
36. Masuda H, Ozeki T, Takazono I, Tanaka Y (1987) Analyses of glycosaminoglycans in human lung cancer. Biochem Med Metab Biol 37: 366-373.
37. Grigoriu BD, Depontieu F, Scherpereel A, Gourcerol D, Devos P, et al. (2006) Endocan expression and relationship with survival in human non-small cell lung cancer. Clin Cancer Res 12: 4575-4582.
38. Raman K, Kuberan B (2010) Chemical Tumor Biology of Heparan Sulfate Proteoglycans. Curr Chem Biol 4: 20-31.
39. Cooney CA, Jousheghany F, Yao-Borengasser A, Phanavanh B, Gomes T, et al. (2011) Chondroitin sulfates play a major role in breast cancer metastasis: a role for CSPG4 and CHST11 gene expression in forming surface P-selectin ligands in aggressive breast cancer cells. Breast Cancer Res 13: R58.
40. Vijayagopal P, Figueroa JE, Levine EA (1998) Altered composition and increased endothelial cell proliferative activity of proteoglycans isolated from breast carcinoma. J Surg Oncol 68: 250-254.
41. Fujii M, Yusa A, Yokoyama Y, Kokuryo T, Tsunoda N, et al. (2010) Cytoplasmic expression of the JM403 antigen GlcA-GlcNH3+ on heparan sulfate glycosaminoglycan in mammary carcinomas--a novel proliferative biomarker for breast cancers with high malignancy. Glycoconj J 27: 661-672.
42. Asimakopoulou AP, Theocharis AD, Tzanakakis GN, Karamanos NK (2008) The biological role of chondroitin sulfate in cancer and chondroitin-based anticancer agents. In Vivo 22: 385-389.
43. Yip GW, Smollich M, Gotte M (2006) Therapeutic value of glycosaminoglycans in cancer. Mol Cancer Ther 5: 2139-2148.
44. Zuo L, Zhang SM, Hu RL, Zhu HQ, Zhou Q, et al. (2008) Correlation between expression and differentiation of endocan in colorectal cancer. World J Gastroenterol 14: 4562-4568.
45. Adany R, Heimer R, Caterson B, Sorrell JM, Iozzo RV (1990) Altered expression of chondroitin sulfate proteoglycan in the stroma of human colon carcinoma. Hypomethylation of PG-40 gene correlates with increased PG-40 content and mRNA levels. J Biol Chem 265: 11389-11396.
46. Gatza CE, Holtzhausen A, Kirkbride KC, Morton A, Gatza ML, et al. (2011) Type III TGF-beta receptor enhances colon cancer cell migration and anchorage-independent growth. Neoplasia 13: 758-770.
47. Yang Y, Macleod V, Dai Y, Khotskaya-Sample Y, Shriver Z, et al. (2007) The syndecan-1 heparan sulfate proteoglycan is a viable target for myeloma therapy. Blood 110: 2041-2048.
48. Masuda H, Ozeki T, Takazono I, Tanaka Y (1989) Composition of glycosaminoglycans in human pancreatic cancer. Biochem Med Metab Biol 41: 193-200.
49. Hrabar D, Aralica G, Gomercic M, Ljubicic N, Kruslin B, et al. Epithelial and stromal expression of syndecan-2 in pancreatic carcinoma. Anticancer Res 30: 2749-2753.
50. Kleeff J, Ishiwata T, Kumbasar A, Friess H, Buchler MW, et al. (1998) The cell-surface heparan sulfate proteoglycan glypican-1 regulates growth factor action in pancreatic carcinoma cells and is overexpressed in human pancreatic cancer. J Clin Invest 102: 1662-1673.
51. Theocharis AD, Vynios DH, Papageorgakopoulou N, Skandalis SS, Theocharis DA (2003) Altered content composition and structure of glycosaminoglycans and proteoglycans in gastric carcinoma. Int J Biochem Cell Biol 35: 376-390.
52. Hishinuma M, Ohashi KI, Yamauchi N, Kashima T, Uozaki H, et al. (2006) Hepatocellular oncofetal protein, glypican 3 is a sensitive marker for alpha-fetoprotein-producing gastric carcinoma. Histopathology 49: 479-486.
53. De Klerk DP, Lee DV, Human HJ (1984) Glycosaminoglycans of human prostatic cancer. J Urol 131: 1008-1012.
54. Ferro V, Dredge K, Liu L, Hammond E, Bytheway I, et al. (2007) PI-88 and novel heparan sulfate mimetics inhibit angiogenesis. Semin Thromb Hemost 33: 557-568.
55. Lewis KD, Robinson WA, Millward MJ, Powell A, Price TJ, et al. (2008) A phase II study of the heparanase inhibitor PI-88 in patients with advanced melanoma. Invest New Drugs 26: 89-94.
56. Smits NC, Kurup S, Rops AL, ten Dam GB, Massuger LF, et al. (2010) The heparan sulfate motif (GlcNS6S-IdoA2S)3, common in heparin, has a strict topography and is involved in cell behavior and disease. J Biol Chem 285: 41143-41151.
57. Hibino S, Shibuya M, Hoffman MP, Engbring JA, Hossain R, et al. (2005) Laminin alpha5 chain metastasis- and angiogenesis-inhibiting peptide blocks fibroblast growth factor 2 activity by binding to the heparan sulfate chains of CD44. Cancer Res 65: 10494-10501.
58. Hibino S, Shibuya M, Engbring JA, Mochizuki M, Nomizu M, et al. (2004) Identification of an active site on the laminin alpha5 chain globular domain that binds to CD44 and inhibits malignancy. Cancer Res 64: 4810-4816.
59. Saharinen P, Eklund L, Pulkki K, Bono P, Alitalo K (2011) VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol Med 17: 347-362.
60. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438: 932-936.
61. Tonnesen MG, Feng X, Clark RA (2000) Angiogenesis in wound healing. J Investig Dermatol Symp Proc 5: 40-46.
62. Cavallaro U, Christofori G (2000) Molecular mechanisms of tumor angiogenesis and tumor progression. J Neurooncol 50: 63-70.
63. Folkman J (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29: 15-18.
64. Parker B, Sukumar S (2003) Distant metastasis in breast cancer: molecular mechanisms and therapeutic targets. Cancer Biol Ther 2: 14-21.
65. Weis SM, Cheresh DA (2011) Tumor angiogenesis: molecular pathways and therapeutic targets. Nat Med 17: 1359-1370.
66. Desreumaux P, Capron M (1996) Eosinophils in allergic reactions. Curr Opin Immunol 8: 790-795.
67. Broide DH, Gleich GJ, Cuomo AJ, Coburn DA, Federman EC, et al. (1991) Evidence of ongoing mast cell and eosinophil degranulation in symptomatic asthma airway. J Allergy Clin Immunol 88: 637-648.
68. Lonnkvist K, Moshfegh A, Pedroletti C, Hedlin G, Hallden G, et al. (2002) Increased eosinophil transmigration after nasal allergen challenge in children with allergic asthma and rhinitis. Allergy 57: 1200-1204.
69. Bystrom J, Amin K, Bishop-Bailey D (2011) Analysing the eosinophil cationic protein--a clue to the function of the eosinophil granulocyte. Respir Res 12: 10.
70. Gleich GJ, Adolphson CR (1986) The eosinophilic leukocyte: structure and function. Adv Immunol 39: 177-253.
71. Hamann KJ, Ten RM, Loegering DA, Jenkins RB, Heise MT, et al. (1990) Structure and chromosome localization of the human eosinophil-derived neurotoxin and eosinophil cationic protein genes: evidence for intronless coding sequences in the ribonuclease gene superfamily. Genomics 7: 535-546.
72. Woschnagg C, Rubin J, Venge P (2009) Eosinophil cationic protein (ECP) is processed during secretion. J Immunol 183: 3949-3954.
73. Lehrer RI, Szklarek D, Barton A, Ganz T, Hamann KJ, et al. (1989) Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J Immunol 142: 4428-4434.
74. Hamann KJ, Gleich GJ, Checkel JL, Loegering DA, McCall JW, et al. (1990) In vitro killing of microfilariae of Brugia pahangi and Brugia malayi by eosinophil granule proteins. J Immunol 144: 3166-3173.
75. Domachowske JB, Dyer KD, Adams AG, Leto TL, Rosenberg HF (1998) Eosinophil cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity. Nucleic Acids Res 26: 3358-3363.
76. Maeda T, Kitazoe M, Tada H, de Llorens R, Salomon DS, et al. (2002) Growth inhibition of mammalian cells by eosinophil cationic protein. Eur J Biochem 269: 307-316.
77. Berstad A, Borkje B, Riedel B, Elsayed S, Berstad A (1993) Increased fecal eosinophil cationic protein in inflammatory bowel disease. Hepatogastroenterology 40: 276-278.
78. Niccoli G, Ferrante G, Cosentino N, Conte M, Belloni F, et al. (2010) Eosinophil cationic protein: A new biomarker of coronary atherosclerosis. Atherosclerosis 211: 606-611.
79. Gleich GJ (2000) Mechanisms of eosinophil-associated inflammation. J Allergy Clin Immunol 105: 651-663.
80. Badar A, Saeed W, Hussain MM, Aslam M (2004) Correlation of eosinophil cationic protein with severity of asthma. J Ayub Med Coll Abbottabad 16: 66-71.
81. Young JD, Peterson CG, Venge P, Cohn ZA (1986) Mechanism of membrane damage mediated by human eosinophil cationic protein. Nature 321: 613-616.
82. Navarro S, Aleu J, Jimenez M, Boix E, Cuchillo CM, et al. (2008) The cytotoxicity of eosinophil cationic protein/ribonuclease 3 on eukaryotic cell lines takes place through its aggregation on the cell membrane. Cell Mol Life Sci 65: 324-337.
83. Carreras E, Boix E, Navarro S, Rosenberg HF, Cuchillo CM, et al. (2005) Surface-exposed amino acids of eosinophil cationic protein play a critical role in the inhibition of mammalian cell proliferation. Mol Cell Biochem 272: 1-7.
84. Gleich GJ, Loegering DA, Bell MP, Checkel JL, Ackerman SJ, et al. (1986) Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease. Proc Natl Acad Sci U S A 83: 3146-3150.
85. Fan TC, Chang HT, Chen IW, Wang HY, Chang MD (2007) A heparan sulfate-facilitated and raft-dependent macropinocytosis of eosinophil cationic protein. Traffic 8: 1778-1795.
86. Munoz EM, Linhardt RJ (2004) Heparin-binding domains in vascular biology. Arterioscler Thromb Vasc Biol 24: 1549-1557.
87. Fromm JR, Hileman RE, Caldwell EE, Weiler JM, Linhardt RJ (1997) Pattern and spacing of basic amino acids in heparin binding sites. Arch Biochem Biophys 343: 92-100.
88. Cardin AD, Weintraub, H. J. (1989) Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis 9: 21-32.
89. Lien PC, Kuo PH, Chen CJ, Chang HH, Fang SL, et al. (2013) In silico prediction and in vitro characterization of multifunctional human RNase3. Biomed Res Int 2013: 170398.
90. Garcia-Mayoral MF, Moussaoui M, de la Torre BG, Andreu D, Boix E, et al. (2010) NMR structural determinants of eosinophil cationic protein binding to membrane and heparin mimetics. Biophys J 98: 2702-2711.
91. Fan TC, Fang SL, Hwang CS, Hsu CY, Lu XA, et al. (2008) Characterization of molecular interactions between eosinophil cationic protein and heparin. J Biol Chem 283: 25468-25474.
92. Fang SL, Fan TC, Fu HW, Chen CJ, Hwang CS, et al. (2013) A novel cell-penetrating peptide derived from human eosinophil cationic protein. PLoS One 8: e57318.
93. Hung T-J (2013) Structural basis for differential heparin binding modes of human eosinophil ribonucleases. PHD thesis.
94. Biswas S, Dodwadkar NS, Deshpande PP, Parab S, Torchilin VP (2013) Surface functionalization of doxorubicin-loaded liposomes with octa-arginine for enhanced anticancer activity. Eur J Pharm Biopharm 84: 517-525.
95. Koren E, Apte A, Jani A, Torchilin VP (2012) Multifunctional PEGylated 2C5-immunoliposomes containing pH-sensitive bonds and TAT peptide for enhanced tumor cell internalization and cytotoxicity. J Control Release 160: 264-273.
96. Gehlsen KR, Argraves WS, Pierschbacher MD, Ruoslahti E (1988) Inhibition of in vitro tumor cell invasion by Arg-Gly-Asp-containing synthetic peptides. J Cell Biol 106: 925-930.
97. Cai LL, Liu P, Li X, Huang X, Ye YQ, et al. (2011) RGD peptide-mediated chitosan-based polymeric micelles targeting delivery for integrin-overexpressing tumor cells. Int J Nanomedicine 6: 3499-3508.
98. Lee TY, Lin CT, Kuo SY, Chang DK, Wu HC (2007) Peptide-mediated targeting to tumor blood vessels of lung cancer for drug delivery. Cancer Res 67: 10958-10965.
99. Kidd KR, Weinstein BM (2003) Fishing for novel angiogenic therapies. Br J Pharmacol 140: 585-594.
100. Serbedzija GN, Flynn E, Willett CE (1999) Zebrafish angiogenesis: a new model for drug screening. Angiogenesis 3: 353-359.
101. Ferlay J SI, Ervik M, Dikshit R, Eser S, Mathers C, et al. (2013) Estimated Incidence, Mortality and Prevalence Worldwide in 2012. World Health Organization.
102. Kumar R, Roy I, Ohulchanskky TY, Vathy LA, Bergey EJ, et al. (2010) In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano 4: 699-708.
103. Nagayama S, Ogawara K, Fukuoka Y, Higaki K, Kimura T (2007) Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int J Pharm 342: 215-221.
104. Sanderson RD (2001) Heparan sulfate proteoglycans in invasion and metastasis. Semin Cell Dev Biol 12: 89-98.
105. Gitay-Goren H, Soker S, Vlodavsky I, Neufeld G (1992) The binding of vascular endothelial growth factor to its receptors is dependent on cell surface-associated heparin-like molecules. J Biol Chem 267: 6093-6098.
106. Lamalice L, Le Boeuf F, Huot J (2007) Endothelial cell migration during angiogenesis. Circ Res 100: 782-794.
107. Yates-Binder CC, Rodgers M, Jaynes J, Wells A, Bodnar RJ, et al. (2012) An IP-10 (CXCL10)-derived peptide inhibits angiogenesis. PLoS One 7: e40812.
108. Gupta B, Levchenko TS, Torchilin VP (2005) Intracellular delivery of large molecules and small particles by cell-penetrating proteins and peptides. Adv Drug Deliv Rev 57: 637-651.
109. Torchilin VP (2008) Cell penetrating peptide-modified pharmaceutical nanocarriers for intracellular drug and gene delivery. Biopolymers 90: 604-610.
110. Koren E, Torchilin VP (2012) Cell-penetrating peptides: breaking through to the other side. Trends Mol Med 18: 385-393.
111. Villa R, Folini M, Lualdi S, Veronese S, Daidone MG, et al. (2000) Inhibition of telomerase activity by a cell-penetrating peptide nucleic acid construct in human melanoma cells. FEBS Lett 473: 241-248.
112. Shadidi M, Sioud M (2003) Identification of novel carrier peptides for the specific delivery of therapeutics into cancer cells. FASEB J 17: 256-258.
113. Yang W, Luo D, Wang S, Wang R, Chen R, et al. (2008) TMTP1, a novel tumor-homing peptide specifically targeting metastasis. Clin Cancer Res 14: 5494-5502.
114. Wang Z, Yu Y, Dai W, Lu J, Cui J, et al. (2012) The use of a tumor metastasis targeting peptide to deliver doxorubicin-containing liposomes to highly metastatic cancer. Biomaterials 33: 8451-8460.
115. He X, Na MH, Kim JS, Lee GY, Park JY, et al. (2011) A novel peptide probe for imaging and targeted delivery of liposomal doxorubicin to lung tumor. Mol Pharm 8: 430-438.
116. Cai SR, Xu G, Becker-Hapak M, Ma M, Dowdy SF, et al. (2006) The kinetics and tissue distribution of protein transduction in mice. Eur J Pharm Sci 27: 311-319.
117. Zhang B, Yang B, Zhai C, Jiang B, Wu Y (2013) The role of exendin-4-conjugated superparamagnetic iron oxide nanoparticles in beta-cell-targeted MRI. Biomaterials 34: 5843-5852.
118. Travis WD, Travis LB, Devesa SS (1995) Lung cancer. Cancer 75: 191-202.
119. Lee HJ, Lee EO, Rhee YH, Ahn KS, Li GX, et al. (2006) An oriental herbal cocktail, ka-mi-kae-kyuk-tang, exerts anti-cancer activities by targeting angiogenesis, apoptosis and metastasis. Carcinogenesis 27: 2455-2463.
120. Voura EB, Sandig M, Siu CH (1998) Cell-cell interactions during transendothelial migration of tumor cells. Microsc Res Tech 43: 265-275.
121. Iozzo RV, San Antonio JD (2001) Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest 108: 349-355.
122. Pikas DS, Li JP, Vlodavsky I, Lindahl U (1998) Substrate specificity of heparanases from human hepatoma and platelets. J Biol Chem 273: 18770-18777.
123. Vlodavsky I, Beckhove P, Lerner I, Pisano C, Meirovitz A, et al. (2012) Significance of heparanase in cancer and inflammation. Cancer Microenviron 5: 115-132.
124. Hulett MD, Freeman C, Hamdorf BJ, Baker RT, Harris MJ, et al. (1999) Cloning of mammalian heparanase, an important enzyme in tumor invasion and metastasis. Nat Med 5: 803-809.
125. Vlodavsky I, Friedmann Y, Elkin M, Aingorn H, Atzmon R, et al. (1999) Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nat Med 5: 793-802.
126. Tang W, Nakamura Y, Tsujimoto M, Sato M, Wang X, et al. (2002) Heparanase: a key enzyme in invasion and metastasis of gastric carcinoma. Mod Pathol 15: 593-598.
127. Maxhimer JB, Quiros RM, Stewart R, Dowlatshahi K, Gattuso P, et al. (2002) Heparanase-1 expression is associated with the metastatic potential of breast cancer. Surgery 132: 326-333.
128. Lapierre F, Holme K, Lam L, Tressler RJ, Storm N, et al. (1996) Chemical modifications of heparin that diminish its anticoagulant but preserve its heparanase-inhibitory, angiostatic, anti-tumor and anti-metastatic properties. Glycobiology 6: 355-366.
129. Parish CR, Freeman C, Brown KJ, Francis DJ, Cowden WB (1999) Identification of sulfated oligosaccharide-based inhibitors of tumor growth and metastasis using novel in vitro assays for angiogenesis and heparanase activity. Cancer Res 59: 3433-3441.
130. Marchetti D, Reiland J, Erwin B, Roy M (2003) Inhibition of heparanase activity and heparanase-induced angiogenesis by suramin analogues. Int J Cancer 104: 167-174.
131. Welch JE, Bengtson P, Svensson K, Wittrup A, Jenniskens GJ, et al. (2008) Single chain fragment anti-heparan sulfate antibody targets the polyamine transport system and attenuates polyamine-dependent cell proliferation. Int J Oncol 32: 749-756.
132. Lee TY, Folkman J, Javaherian K (2010) HSPG-binding peptide corresponding to the exon 6a-encoded domain of VEGF inhibits tumor growth by blocking angiogenesis in murine model. PLoS One 5: e9945.
133. Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 278: 16-27.
134. Yu Q, Stamenkovic I (1999) Localization of matrix metalloproteinase 9 to the cell surface provides a mechanism for CD44-mediated tumor invasion. Genes Dev 13: 35-48.
135. Zhu XL, Wang YL, Chen JP, Duan LL, Cong PF, et al. (2014) Alternol inhibits migration and invasion of human hepatocellular carcinoma cells by targeting epithelial-to-mesenchymal transition. Tumour Biol 35: 1627-1635.
136. Lee KS, Shin JS, Nam KS (2013) Starfish polysaccharides downregulate metastatic activity through the MAPK signaling pathway in MCF-7 human breast cancer cells. Mol Biol Rep 40: 5959-5966.
137. Cance WG, Harris JE, Iacocca MV, Roche E, Yang X, et al. (2000) Immunohistochemical analyses of focal adhesion kinase expression in benign and malignant human breast and colon tissues: correlation with preinvasive and invasive phenotypes. Clin Cancer Res 6: 2417-2423.
138. Meng XN, Jin Y, Yu Y, Bai J, Liu GY, et al. (2009) Characterisation of fibronectin-mediated FAK signalling pathways in lung cancer cell migration and invasion. Br J Cancer 101: 327-334.
139. Yayon A, Klagsbrun M, Esko JD, Leder P, Ornitz DM (1991) Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell 64: 841-848.
140. Jakobsson L, Kreuger J, Holmborn K, Lundin L, Eriksson I, et al. (2006) Heparan sulfate in trans potentiates VEGFR-mediated angiogenesis. Dev Cell 10: 625-634.
141. Zachary I (2001) Signaling mechanisms mediating vascular protective actions of vascular endothelial growth factor. Am J Physiol Cell Physiol 280: C1375-1386.
142. Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, et al. (1998) Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 273: 30336-30343.
143. Fujio Y, Walsh K (1999) Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner. J Biol Chem 274: 16349-16354.
144. Zachary I, Rozengurt E (1992) Focal adhesion kinase (p125FAK): a point of convergence in the action of neuropeptides, integrins, and oncogenes. Cell 71: 891-894.
145. Abedi H, Zachary I (1997) Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J Biol Chem 272: 15442-15451.
146. Rousseau S, Houle F, Kotanides H, Witte L, Waltenberger J, et al. (2000) Vascular endothelial growth factor (VEGF)-driven actin-based motility is mediated by VEGFR2 and requires concerted activation of stress-activated protein kinase 2 (SAPK2/p38) and geldanamycin-sensitive phosphorylation of focal adhesion kinase. J Biol Chem 275: 10661-10672.
147. Mehta RR, Yamada T, Taylor BN, Christov K, King ML, et al. (2011) A cell penetrating peptide derived from azurin inhibits angiogenesis and tumor growth by inhibiting phosphorylation of VEGFR-2, FAK and Akt. Angiogenesis 14: 355-369.
148. Lee E, Koskimaki JE, Pandey NB, Popel AS (2013) Inhibition of lymphangiogenesis and angiogenesis in breast tumor xenografts and lymph nodes by a peptide derived from transmembrane protein 45A. Neoplasia 15: 112-124.
149. Hamma-Kourbali Y, Bermek O, Bernard-Pierrot I, Karaky R, Martel-Renoir D, et al. (2011) The synthetic peptide P111-136 derived from the C-terminal domain of heparin affin regulatory peptide inhibits tumour growth of prostate cancer PC-3 cells. BMC Cancer 11: 212.
150. Chen R, Braun GB, Luo X, Sugahara KN, Teesalu T, et al. (2013) Application of a proapoptotic peptide to intratumorally spreading cancer therapy. Cancer Res 73: 1352-1361.
151. Li S, Dong W, Zong Y, Yin W, Jin G, et al. (2007) Polyethylenimine-complexed plasmid particles targeting focal adhesion kinase function as melanoma tumor therapeutics. Mol Ther 15: 515-523.
152. Mao HL, Pang Y, Zhang X, Yang F, Zheng J, et al. (2013) Smac peptide potentiates TRAIL- or paclitaxel-mediated ovarian cancer cell death in vitro and in vivo. Oncol Rep 29: 515-522.
153. Chatterjee S, Heukamp LC, Siobal M, Schottle J, Wieczorek C, et al. (2013) Tumor VEGF:VEGFR2 autocrine feed-forward loop triggers angiogenesis in lung cancer. J Clin Invest 123: 1732-1740.
154. Lutgendorf SK, Cole S, Costanzo E, Bradley S, Coffin J, et al. (2003) Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Clin Cancer Res 9: 4514-4521.
155. Hanrahan V, Currie MJ, Gunningham SP, Morrin HR, Scott PA, et al. (2003) The angiogenic switch for vascular endothelial growth factor (VEGF)-A, VEGF-B, VEGF-C, and VEGF-D in the adenoma-carcinoma sequence during colorectal cancer progression. J Pathol 200: 183-194.