研究生: |
傅勝雍 Fu, Sheng-Yung |
---|---|
論文名稱: |
針對腫瘤微環境之反應來增進單一大劑量放射療法之療效 Targeting the Chronological Response of Tumor Microenvironment to Improve the Efficacy of Large Single-Dose Radiotherapy |
指導教授: |
江啟勳
Chiang, Chi-Shiun |
口試委員: |
洪志宏
Hong, Ji-Hing 陳韻晶 Chen, Yun-Ching 陳芳馨 Chen, Fanh-Hsin 張建文 Chang, Chien-Wen 王俊傑 Wang, Chun-Chieh |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 75 |
中文關鍵詞: | 放射療法 、腫瘤微環境 、慢性缺氧 、血管 、源骨髓性抑制細胞 、腫瘤巨噬細胞 、微利基 |
外文關鍵詞: | Radiotherapy, Tumor microenvironment, Cronic hypoxia, Vasculature, Myeloid derived suppressor cells, Tumor-associated macrophage, Micro-niche |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
放射治療在臨床上是一種很常見的惡性腫瘤的治療方法,放射線不僅可以直接傷害癌細胞也可以調控其腫瘤微環境的變化。腫瘤微環境包含了血管系統,浸潤的免疫細胞,纖維母細胞和其他可以幫助腫瘤生長的族群,這些細胞會影響腫瘤治療之療效。目前在腫瘤治療上的共識是如何去辨明跟利用這些腫瘤微環境的變化進而來促進放射治療的效果。然而在單一大劑量照射(SLDLTI)過後的腫瘤微環境之變化目前仍舊不明,本論文主要是要探討SLDLTI對輻射抗性高的小鼠攝護腺癌腫瘤(TRAMP-C1)照射單一大劑量25Gy後及其腫瘤微環境之特殊變化。我們發現SLDLTI對TRAMP-C1腫瘤照射25Gy後會降低腫瘤內的血管密度,但卻會引起腫瘤微環境之異質性的血管與缺氧區域分布。而且這種異質性的SLDLTI腫瘤微環境會促進缺氧誘導因子的表現,我們利用了缺氧誘導因子之抑制劑chetomin可以成功克服這點並提升放射治療的效果。SLDLTI四小時後,便會快速地誘使能幫助腫瘤生長的源骨髓性免疫抑制細胞浸潤到腫瘤之中,並且隨著時間會讓腫瘤和周邊血液中的源骨髓性免疫抑制細胞數目會大量地上升。我們也發現照射過後的腫瘤內部慢性缺氧區域附近會生一種特殊的免疫細胞分布,其包含了在壞死區域聚集的Ly6G+多葉核型源骨髓性抑制細胞和在慢性缺氧區聚集的CD68+腫瘤巨噬細胞,並且將之定義為能夠幫助放射治療過後的腫瘤再生長的”微利基”。這些聚集的腫瘤巨噬細胞具有特殊的基因表現,包括Arg-1、iNOS、tie2、jag-1和endostatin等等。而這種特殊的聚集現象和一氧化氮分子有關,並且餵食老鼠一氧化氮生成酶之抑制劑能夠阻止腫瘤巨噬細胞的聚集,其可以作為合併放射治療的治療目標。我們也另外使用Gr-1抗體及白喉毒素分別直接地剔除腫瘤內部的源骨髓性免疫抑制細胞和腫瘤巨噬細胞,剔除掉這些特定的細胞後更可以增進放射治療過後腫瘤之控制。這些結果顯示SLDLTI治療過後會產生特殊的異質性腫瘤微環境,針對這些腫瘤微環境之變化可以增進對放射治療抗性高的腫瘤之療效。
Radiotherapy is a conventional modality for malignancy in clinical. Radiation not only damage proliferative tumor cells directly but also exert regulation of tumor microenvironment (TME). TME is consisted of vasculature, infiltrated immune cells, tumor-associated fibroblast and others pro-tumoral stomal cells, which could affect the efficacy of anti-tumor therapy. How to discriminate and utilize the distinct irradiated TME is a consensus for improving radiotherapy efficacy. However, the influence of single large-dose of local tumor irradiation (SLDLTI) on TME is still elusive. In this thesis, relatively radio-resistant murine prostate tumor, TRAMP-C1, was irradiated with a large single dose of 25Gy and its distinct chronological change within TME was verified. SLDLTI could significantly decrease micro-vascular density (MVD) associated with evolving heterogeneous distribution of vasculature and hypoxia. Furthermore, the hypoxia-induced factor (HIF) pathway was induced in TME following SLDLTI, which could be impaired by the administration of HIF inhibitor, chetomin. SLDLTI could rapidly recruit pro-tumoral myeloid-derived suppressor cells (MDSCs) in 4 hours, and subsequently induce systemic MDSCs’ expansion both in tumor and peripheral blood. A specific re-distribution, composed accumulated more immunosuppressive type of Ly6G+ polymorphonuclear MDSCs (PMN-MDSCs) in necrosis and aggregated CD68+ tumor-associated macrophages (TAMs) in chronic hypoxia were found and defined as a “micro-niche” in favoring the regrowth of irradiated tumor. The aggregated CD68+ TAMs in chronic hypoxia possessed distinct gene expression, such as Arg-1, iNOS, tie2, jag-1 and endostatin. Moreover, the aggregation of CD68+ TAMs was nitric oxide (NO) -dependent, which could be attenuated by treating NO inhibitor and serve as a therapeutic target in SLDLTI tumors. The MDSCs and TAMs were further alternatively depleted by administration of Gr-1 antibody and diphtheria toxin (DT) in CD11b-DTR mice, respectively, which benefited SLDLTI on tumors control. Those emerging data suggested that SLDLTI could evolve a distinct heterogeneous TME. Targeting on the chronological response on SLDLTI-treated tumors is potent to improve the efficacy of radiotherapy in radio-resistant tumors.
1. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013;19:1423-37.
2. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nature reviews Immunology 2009;9:162-74.
3. Nathan C. Neutrophils and immunity: Challenges and opportunities. Nature reviews Immunology 2006;6:173-82.
4. Pollard JW. Tumour-educated macrophages promote tumour progression and metastasis. Nature reviews Cancer 2004;4:71-8.
5. Fukumura D, Jain RK. Tumor microvasculature and microenvironment: Targets for anti-angiogenesis and normalization. Microvasc Res 2007;74:72-84.
6. Cirri P, Chiarugi P. Cancer associated fibroblasts: The dark side of the coin. Am J Cancer Res 2011;1:482-97.
7. Weichselbaum RR, Liang H, Deng L, et al. Radiotherapy and immunotherapy: A beneficial liaison? Nat Rev Clin Oncol 2017;14:365-379.
8. Sharabi AB, Nirschl CJ, Kochel CM, et al. Stereotactic radiation therapy augments antigen-specific pd-1-mediated antitumor immune responses via cross-presentation of tumor antigen. Cancer Immunol Res 2015;3:345-55.
9. Grassberger C, Ellsworth SG, Wilks MQ, et al. Assessing the interactions between radiotherapy and antitumour immunity. Nat Rev Clin Oncol 2019;16:729-745.
10. Frey B, Hehlgans S, Rodel F, et al. Modulation of inflammation by low and high doses of ionizing radiation: Implications for benign and malign diseases. Cancer Lett 2015;368:230-7.
11. Filatenkov A, Baker J, Mueller AM, et al. Ablative tumor radiation can change the tumor immune cell microenvironment to induce durable complete remissions. Clin Cancer Res 2015;21:3727-39.
12. Klug F, Prakash H, Huber PE, et al. Low-dose irradiation programs macrophage differentiation to an inos(+)/m1 phenotype that orchestrates effective t cell immunotherapy. Cancer cell 2013;24:589-602.
13. Jarosz-Biej M, Smolarczyk R, Cichon T, et al. Tumor microenvironment as a "game changer" in cancer radiotherapy. Int J Mol Sci 2019;20.
14. Folkman J. Anti-angiogenesis: New concept for therapy of solid tumors. Ann Surg 1972;175:409-16.
15. Zirlik K, Duyster J. Anti-angiogenics: Current situation and future perspectives. Oncol Res Treat 2018;41:166-171.
16. Semenza GL. Targeting hif-1 for cancer therapy. Nature reviews Cancer 2003;3:721-32.
17. Fong GH. Mechanisms of adaptive angiogenesis to tissue hypoxia. Angiogenesis 2008;11:121-40.
18. Garcia-Barros M, Paris F, Cordon-Cardo C, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 2003;300:1155-9.
19. Chen FH, Chiang CS, Wang CC, et al. Radiotherapy decreases vascular density and causes hypoxia with macrophage aggregation in tramp-c1 prostate tumors. Clin Cancer Res 2009;15:1721-9.
20. Chen FH, Chiang CS, Wang CC, et al. Vasculatures in tumors growing from preirradiated tissues: Formed by vasculogenesis and resistant to radiation and antiangiogenic therapy. International journal of radiation oncology, biology, physics 2011;80:1512-21.
21. Nagaraj S, Gupta K, Pisarev V, et al. Altered recognition of antigen is a mechanism of cd8+ t cell tolerance in cancer. Nat Med 2007;13:828-35.
22. Yang L, DeBusk LM, Fukuda K, et al. Expansion of myeloid immune suppressor gr+cd11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer cell 2004;6:409-21.
23. Kujawski M, Kortylewski M, Lee H, et al. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. The Journal of clinical investigation 2008;118:3367-77.
24. Yan HH, Pickup M, Pang Y, et al. Gr-1+cd11b+ myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer research 2010;70:6139-49.
25. Gao D, Joshi N, Choi H, et al. Myeloid progenitor cells in the premetastatic lung promote metastases by inducing mesenchymal to epithelial transition. Cancer research 2012;72:1384-94.
26. Youn JI, Nagaraj S, Collazo M, et al. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. Journal of immunology 2008;181:5791-802.
27. Diaz-Montero CM, Salem ML, Nishimura MI, et al. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer immunology, immunotherapy : CII 2009;58:49-59.
28. Vasquez-Dunddel D, Pan F, Zeng Q, et al. Stat3 regulates arginase-i in myeloid-derived suppressor cells from cancer patients. The Journal of clinical investigation 2013;123:1580-9.
29. Arihara F, Mizukoshi E, Kitahara M, et al. Increase in cd14+hla-dr -/low myeloid-derived suppressor cells in hepatocellular carcinoma patients and its impact on prognosis. Cancer immunology, immunotherapy : CII 2013;62:1421-30.
30. Sinha P, Clements VK, Fulton AM, et al. Prostaglandin e2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer research 2007;67:4507-13.
31. Panopoulos AD, Watowich SS. Granulocyte colony-stimulating factor: Molecular mechanisms of action during steady state and 'emergency' hematopoiesis. Cytokine 2008;42:277-88.
32. Marigo I, Bosio E, Solito S, et al. Tumor-induced tolerance and immune suppression depend on the c/ebpbeta transcription factor. Immunity 2010;32:790-802.
33. Chen WC, Lai CH, Chuang HC, et al. Inflammation-induced myeloid-derived suppressor cells associated with squamous cell carcinoma of the head and neck. Head Neck 2017;39:347-355.
34. Sica A, Larghi P, Mancino A, et al. Macrophage polarization in tumour progression. Seminars in cancer biology 2008;18:349-55.
35. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell 2010;141:39-51.
36. Gordon S. Alternative activation of macrophages. Nature reviews Immunology 2003;3:23-35.
37. Mantovani A, Marchesi F, Malesci A, et al. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 2017;14:399-416.
38. Zhan X, Jia L, Niu Y, et al. Targeted depletion of tumour-associated macrophages by an alendronate-glucomannan conjugate for cancer immunotherapy. Biomaterials 2014;35:10046-57.
39. Gerhardt T, Ley K. Monocyte trafficking across the vessel wall. Cardiovasc Res 2015;107:321-30.
40. Pathria P, Louis TL, Varner JA. Targeting tumor-associated macrophages in cancer. Trends Immunol 2019;40:310-327.
41. Qian BZ, Li J, Zhang H, et al. Ccl2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 2011;475:222-5.
42. Li X, Yao W, Yuan Y, et al. Targeting of tumour-infiltrating macrophages via ccl2/ccr2 signalling as a therapeutic strategy against hepatocellular carcinoma. Gut 2017;66:157-167.
43. De Palma M, Murdoch C, Venneri MA, et al. Tie2-expressing monocytes: Regulation of tumor angiogenesis and therapeutic implications. Trends Immunol 2007;28:519-24.
44. Mazzieri R, Pucci F, Moi D, et al. Targeting the ang2/tie2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer cell 2011;19:512-26.
45. Etzerodt A, Tsalkitzi K, Maniecki M, et al. Specific targeting of cd163(+) tams mobilizes inflammatory monocytes and promotes t cell-mediated tumor regression. J Exp Med 2019;216:2394-2411.
46. Hu JM, Liu K, Liu JH, et al. Cd163 as a marker of m2 macrophage, contribute to predicte aggressiveness and prognosis of kazakh esophageal squamous cell carcinoma. Oncotarget 2017;8:21526-21538.
47. Pantano F, Berti P, Guida FM, et al. The role of macrophages polarization in predicting prognosis of radically resected gastric cancer patients. J Cell Mol Med 2013;17:1415-21.
48. Laoui D, Van Overmeire E, Movahedi K, et al. Mononuclear phagocyte heterogeneity in cancer: Different subsets and activation states reaching out at the tumor site. Immunobiology 2011;216:1192-202.
49. Zhu Y, Herndon JM, Sojka DK, et al. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity 2017;47:323-338 e6.
50. Tripathi C, Tewari BN, Kanchan RK, et al. Macrophages are recruited to hypoxic tumor areas and acquire a pro-angiogenic m2-polarized phenotype via hypoxic cancer cell derived cytokines oncostatin m and eotaxin. Oncotarget 2014;5:5350-68.
51. Zhang J, Cao J, Ma S, et al. Tumor hypoxia enhances non-small cell lung cancer metastasis by selectively promoting macrophage m2 polarization through the activation of erk signaling. Oncotarget 2014;5:9664-77.
52. Leblond MM, Gerault AN, Corroyer-Dulmont A, et al. Hypoxia induces macrophage polarization and re-education toward an m2 phenotype in u87 and u251 glioblastoma models. Oncoimmunology 2016;5:e1056442.
53. Doedens AL, Stockmann C, Rubinstein MP, et al. Macrophage expression of hypoxia-inducible factor-1 alpha suppresses t-cell function and promotes tumor progression. Cancer research 2010;70:7465-75.
54. Saylor J, Ma Z, Goodridge HS, et al. Spatial mapping of myeloid cells and macrophages by multiplexed tissue staining. Front Immunol 2018;9:2925.
55. Huang YK, Wang M, Sun Y, et al. Macrophage spatial heterogeneity in gastric cancer defined by multiplex immunohistochemistry. Nat Commun 2019;10:3928.
56. Kozin SV, Kamoun WS, Huang Y, et al. Recruitment of myeloid but not endothelial precursor cells facilitates tumor regrowth after local irradiation. Cancer research 2010;70:5679-85.
57. Ahn GO, Tseng D, Liao CH, et al. Inhibition of mac-1 (cd11b/cd18) enhances tumor response to radiation by reducing myeloid cell recruitment. Proc Natl Acad Sci U S A 2010;107:8363-8.
58. Xu J, Escamilla J, Mok S, et al. Csf1r signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer research 2013;73:2782-94.
59. Tsai CS, Chen FH, Wang CC, et al. Macrophages from irradiated tumors express higher levels of inos, arginase-i and cox-2, and promote tumor growth. International journal of radiation oncology, biology, physics 2007;68:499-507.
60. Fukumura D, Kashiwagi S, Jain RK. The role of nitric oxide in tumour progression. Nature reviews Cancer 2006;6:521-34.
61. Arora H, Panara K, Kuchakulla M, et al. Alterations of tumor microenvironment by nitric oxide impedes castration-resistant prostate cancer growth. Proc Natl Acad Sci U S A 2018;115:11298-11303.
62. Perrotta C, Cervia D, Di Renzo I, et al. Nitric oxide generated by tumor-associated macrophages is responsible for cancer resistance to cisplatin and correlated with syntaxin 4 and acid sphingomyelinase inhibition. Front Immunol 2018;9:1186.
63. Varin A, Gordon S. Alternative activation of macrophages: Immune function and cellular biology. Immunobiology 2009;214:630-41.
64. Wang SC, Hong JH, Hsueh C, et al. Tumor-secreted sdf-1 promotes glioma invasiveness and tam tropism toward hypoxia in a murine astrocytoma model. Laboratory investigation; a journal of technical methods and pathology 2012;92:151-62.
65. Kung AL, Zabludoff SD, France DS, et al. Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway. Cancer Cell 2004;6:33-43.
66. Schaue D, Micewicz ED, Ratikan JA, et al. Radiation and inflammation. Semin Radiat Oncol 2015;25:4-10.
67. Ahn GO, Brown JM. Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: Role of bone marrow-derived myelomonocytic cells. Cancer Cell 2008;13:193-205.
68. Brahimi-Horn MC, Chiche J, Pouyssegur J. Hypoxia and cancer. J Mol Med (Berl) 2007;85:1301-7.
69. Rapisarda A, Melillo G. Role of the hypoxic tumor microenvironment in the resistance to anti-angiogenic therapies. Drug Resist Updat 2009;12:74-80.
70. Jing X, Yang F, Shao C, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer 2019;18:157.
71. Saxena K, Jolly MK. Acute vs. Chronic vs. Cyclic hypoxia: Their differential dynamics, molecular mechanisms, and effects on tumor progression. Biomolecules 2019;9.
72. Artavanis-Tsakonas S, Rand MD, Lake RJ. Notch signaling: Cell fate control and signal integration in development. Science 1999;284:770-6.
73. Lai EC. Notch signaling: Control of cell communication and cell fate. Development 2004;131:965-73.
74. Ranganathan P, Weaver KL, Capobianco AJ. Notch signalling in solid tumours: A little bit of everything but not all the time. Nat Rev Cancer 2011;11:338-51.
75. Nowell CS, Radtke F. Notch as a tumour suppressor. Nat Rev Cancer 2017;17:145-159.
76. Bridges E, Oon CE, Harris A. Notch regulation of tumor angiogenesis. Future Oncol 2011;7:569-88.
77. Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell 2011;146:873-87.
78. Fazio C, Ricciardiello L. Inflammation and notch signaling: A crosstalk with opposite effects on tumorigenesis. Cell Death Dis 2016;7:e2515.
79. Banerjee D, Barton SM, Grabham PW, et al. High-dose radiation increases notch1 in tumor vasculature. Int J Radiat Oncol Biol Phys 2020;106:857-866.
80. Chen MF, Hsieh CC, Chen WC, et al. Role of interleukin-6 in the radiation response of liver tumors. International journal of radiation oncology, biology, physics 2012;84:e621-30.
81. Frey B, Ruckert M, Weber J, et al. Hypofractionated irradiation has immune stimulatory potential and induces a timely restricted infiltration of immune cells in colon cancer tumors. Front Immunol 2017;8:231.
82. Krombach J, Hennel R, Brix N, et al. Priming anti-tumor immunity by radiotherapy: Dying tumor cell-derived damps trigger endothelial cell activation and recruitment of myeloid cells. Oncoimmunology 2019;8:e1523097.
83. Dolcetti L, Peranzoni E, Ugel S, et al. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by gm-csf. Eur J Immunol 2010;40:22-35.
84. Bayne LJ, Beatty GL, Jhala N, et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and t cell immunity in pancreatic cancer. Cancer Cell 2012;21:822-35.
85. Cheng L, Wang J, Li X, et al. Interleukin-6 induces gr-1+cd11b+ myeloid cells to suppress cd8+ t cell-mediated liver injury in mice. PLoS One 2011;6:e17631.
86. Talmadge JE, Gabrilovich DI. History of myeloid-derived suppressor cells. Nat Rev Cancer 2013;13:739-52.
87. Chen ZY, Raghav K, Lieu CH, et al. Cytokine profile and prognostic significance of high neutrophil-lymphocyte ratio in colorectal cancer. Br J Cancer 2015;112:1088-97.
88. Gonda K, Shibata M, Ohtake T, et al. Myeloid-derived suppressor cells are increased and correlated with type 2 immune responses, malnutrition, inflammation, and poor prognosis in patients with breast cancer. Oncol Lett 2017;14:1766-1774.
89. Mastio J, Condamine T, Dominguez G, et al. Identification of monocyte-like precursors of granulocytes in cancer as a mechanism for accumulation of pmn-mdscs. J Exp Med 2019.
90. Chiche J, Ilc K, Laferriere J, et al. Hypoxia-inducible carbonic anhydrase ix and xii promote tumor cell growth by counteracting acidosis through the regulation of the intracellular ph. Cancer Res 2009;69:358-68.
91. Webb BA, Chimenti M, Jacobson MP, et al. Dysregulated ph: A perfect storm for cancer progression. Nat Rev Cancer 2011;11:671-7.
92. Chafe SC, Lou Y, Sceneay J, et al. Carbonic anhydrase ix promotes myeloid-derived suppressor cell mobilization and establishment of a metastatic niche by stimulating g-csf production. Cancer Res 2015;75:996-1008.