簡易檢索 / 詳目顯示

研究生: 王維邦
Wei-Pang Wang
論文名稱: 番茄熱休克蛋白70 kD的30 kD次區域之構築、表現與分析
The construction, expression and analysis of 30 kD subdomain of Hsc70 in Lycopersicon esculentum
指導教授: 林彩雲
Tsai-Yun Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生命科學系
Department of Life Sciences
論文出版年: 2000
畢業學年度: 88
語文別: 英文
論文頁數: 48
中文關鍵詞: 熱休克蛋白番茄
外文關鍵詞: Hsc, tomato
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 分子監護子對於摺疊新合成的蛋白、組合多個次結構與在逆境下穩定蛋白的非摺疊態都扮演著極重要角色。許多原核與真核生物的分子監護子,當初是以熱休克蛋白 (Hsps) 形式被發現。這些Hsps依據不同的分子量來分類,其基因家族分布在質體、粒腺體、細胞質跟內質網。Hsp70s/Hsc70s經由親脂性與其受質結合,基因表現則由啟動子序列中的
    熱休克反應要素 (HSE) 與熱休克轉錄因子 (HSF) 蛋白來調控。Hsc70的蛋白結構包含44-kDa保守性極高的ATPase區域,保守性較低的18-kDa蛋白結合區與C端10-kDa的變異區。DnaJ/Hsp40會加速ATP水解速率而提高Hsc70的ATPase活性。Hop/p60則跟Hsp70與Hsp90之間的物理連結有關。這兩群輔蛋白是非競爭性的跟Hsc70末端10-kDa區域結合來作用。Bag-1/GrpE能刺激ADP與ATP間的交換,Hip/p48卻能穩定在ADP結合態下的Hsc70,這兩組功能拮抗的蛋白則作用在Hsc70的ATPase區域上。

    番茄的種子吸水後,有兩群的Hsc70s表現,但只有一群Hsc70存在葉子,代表不同發育時期,或者不同的逆境處理都可能造成不同的Hsc70s消長。我們利用pET蛋白表現系統,構築成含有番茄Hsc70不同區域片段的重組蛋白,以研究植物和動物Hsc70s與受質結合的差異。我們也利用病毒表現 (phage display)來篩選跟Hsc70結合的片段。在選出的16個片段,其中HPMSRPR佔有37.5%。植物Hsc70的10-kDa區域帶有較多的親水性胺基酸,而動物Hsc70帶有較多親脂性的胺基酸。


    Molecular chaperones are important in folding newly synthesized polypeptides, assembly of multi-subunit structure and stabilization of proteins unfolded during cellular stresses. Many chaperones were discovered as heat shock proteins (Hsps) from prokaryotes to eukaryotes and classified into groups by the different molecular weight. Hsp70s/Hsc70s bind theirs substrates through hydrophobic interactions and were encoded by gene families in the plastid, mitochondrion, cytoplasm and endoplastic reticulum. The expression of the heat-shock genes is regulated by cis-regulatory promoter elements (HSEs) and trans-active heat shock transcription factors (HSFs). Hsp70s/Hsc70s consist of a highly conserved N-terminal 44-kDa ATPase domain, a less conserved 18-kDa peptide-binding domain and a C-terminal 10-kDa variable domain. DnaJ/Hsp40 stimulates the ATPase activity by accelerating the rate of ATP hydrolysis. Hop/p60 provides a physical link between Hsp70 and Hsp90. These two cofactors bind to the 10-kDa C-terminal domain of Hsc70 in a noncompetitive manner. Bag-1/GrpE is the nucleotide release factor stimulating exchange of ADP for ATP. On the other hand, Hip/p48 stabilizes the ADP bound form by inhibiting the release of nucleotide and has been shown to compete the function of Bag-1 in binding to the ATPase domain.
    Two bands of tomato Hsc70s were detected in seeds, but only one band was detected in leaves. Expression of different Hsc70s at different developmental stages or under stress may be related to the Hsc70s functions and regulation. PET chimeras were constructed to obtain different subdomains of tomato Hsc70s for studying differences of substrate binding in plants and animals. We also performed phage-display selections to screen the peptides bound to Lehsc70-1 30-kDa protein. The observed frequency of HPMSRPR was 37.5% in the 16 selected peptides. A animal Hsc70s contain more hydrophobic residues and plant Hsc70s contain more hydrophilic residues in 10-kDa domains of Hsc70.

    Abstract (Chinese) i Abstract ii Acknowledgments iii Table of Cotents iv List of Tables vi List of Figures vii Abbreviations viii Introduction 1 Materials and Methods 7 Plant materials and stress treatments 7 Crude protein extraction 7 Immunoblot analysis 8 Polymerase chain reaction (PCR) amplification 8 Purification and ligation 10 Competent cell preparation 10 Bacteria transformation 11 Mini-preparation of plasmid DNA 11 Large scale preparation of plasmid DNA 12 pET plasmid construction and expression 13 His˙Tag purification 14 Phage display 14 Single-stranded DNA sequencing 17 Results Immunoblot analysis for plant Hsc70s expressed at different temperaturesImmunoblot analysis for Hsc70s expressed at different developmental stagesConstruct plasmids for pET expression system 1919 20 The expression of pET constructs and immunoblot result 21 His˙Tag purification 21 Phage display screening and single-stranded DNA sequencing 22 Alignment of the deduced amino acid sequences of L. esculentum Hsc70s with other animal and plant Hsc70s 22 GREASE Kyte-Doolittle Hydropathy Profiles of plant and animal Hsc70s 23 Discussion 24 References 27 Appendix 43

    Barros, M. D., Czarnecka, E. and Gurley, W. B. 1992. Mutational analysis of a plant heat shock element. Plant Mol. Biol. 19: 665-675.
    Beissinger, M. and Buchner, J. 1998. How chaperones fold proteins. Biol. Chem. 379: 245-259.
    Benaroudj, N., Fouchaq, B. and Ladjimi, M. M. 1997. The COOH-terminal peptide binding domain is essential for self-association of the molecular chaperone HSC70. J. Biol. Chem. 272: 8744-8751.
    Boorstein, W. R., Ziegelhoffer, T. and Craig, E. A. 1994. Molecular evolution of the HSP70 multigene family. J. Mol. Evol. 38: 1-17.
    Boston, R. S., Viitanen, P. V. and Vierling, E. 1996. Molecular chaperones and protein folding in plants. Plant Mol. Biol. 32: 191-222.
    Bukau, B. and Horwich, A. L. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92: 351-366.
    Burston, S. G. and Clarke, A. R. 1995. Molecular chaperones: physical and mechanistic properties. Essays Biochem. 29: 125-136.
    Craig, E. A. 1985. The heat shock response. CRC Crit. Rev. Biochem. 18: 239-280.
    Cronje, M. J. and Bornman, L. 1999. Salicylic acid influences Hsp70/Hsc70 expression in Lycopersicon esculentum: dose- and time-dependent induction or potentiation. Biochem. Biophys. Res. Commun. 265: 422-427.
    Demand, J., Luders, J. and Hohfeld, J. 1998. The carboxy-terminal domain of Hsc70 provides binding sites for a distinct set of chaperone cofactors. Mol. Cell Biol. 18: 2023-2028.
    Duck, N., McCormick, S. and Winter, J. 1989. Heat shock protein hsp70 cognate gene expression in vegetative and reproductive organs of Lycopersicon esculentum. Proc. Natl. Acad. Sci. USA. 86: 3674-3678.
    Feng, H.P. and Gierasch, L. M. 1998. Molecular chaperones: clamps for the Clps? Curr. Biol. 8: 464-467.
    Fink, A. L. 1999. Chaperone-mediated protein folding. Physiol. Rev. 79: 425-449.
    Fouchaq, B., Benaroudj, N., Ebel, C. and Ladjimi, M. M. 1999. Oligomerization of the 17-kDa peptide-binding domain of the molecular chaperone HSC70. Eur. J. Biochem. 259: 379-384.
    Gunther, E. and Walter, L. 1994. Genetic aspects of the hsp70 multigene family in vertebrates. Experientia. 50: 987-1001.
    Guy, C. L. and Li, Q. B. 1998. The organization and evolution of the spinach stress 70 molecular chaperone gene family. Plant Cell 10: 539-556.
    Heikkila, J. J., Papp, J. E. T., Schultz, G. A. and Bewley, J. D. 1984. Induction of heat shock protein mRNA in maize mesocotyls by water stress, abscisic acid and wounding. Plant Physiol. 76: 270-274.
    Hesterkamp, T. and Bukau, B. 1998. Role of the DnaK and HscA homologs of Hsp70 chaperones in protein folding in E. coli. EMBO J. 17: 4818-4828.
    Hightower, L. and Nover, L. 1991. Heat shock and development. Introduction Results Probl. Cell Differ. 17: 1-4.
    Hu, S. M. and Wang, C. 1996. Involvement of the 10-kDa C-terminal fragment of hsc70 in complexing with unfolded protein. Arch. Biochem. Biophys. 332: 163-169.
    James, P., Pfund, C. and Craig, E. A. 1997. Functional specificity among Hsp70 molecular chaperones. Science 275: 387-389.
    Johnson, B. D., Schumacher, R. J., Ross, E. D. and Toft, D. O. 1998. Hop modulates Hsp70/Hsp90 interactions in protein folding. J. Biol. Chem. 273: 3679-3686.
    Kyte, J. and Doolittle, R. F. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105-132.
    Lee G. J. and Vierling, E. 2000. A small heat shock protein cooperates with heat shock protein 70 systems to reactivate a heat-denatured protein. Plant Physiol. 122: 189-198.
    Li, Q. B., Haskell, D. W. and Guy, C. L. 1998. Cofactor-induced modulation of the functional specificity of the molecular chaperone Hsc70. Biol. Chem. 379: 1217-1226.
    Lin, T. Y., Duck, N. B., Winter, J. and Folk, W. R. 1991. Sequences of two hsc70 cDNAs from from Lycopersicon esculentum. Plant Mol. Biol. 16: 475-478.
    Lin, T. Y. and Markhart III, A. H. 1996. Phaseolus acutifolius A. gray is more heat tolerant than P. vulgaris L. in the absence of water stress. Crop science. 36: 110-114.
    Lindquist, S and Craig, E. A. 1988. The heat-shock proteins. Annu. Rev. Genet. 22: 631-677.
    Luders, J., Demand, J., Schonfelder, S., Frien, M., Zimmermann, R. and Hohfeld, J. 1998. Cofactor-induced modulation of the functional specificity of the molecular chaperone Hsc70. Biol. Chem. 379: 1217-1226.
    Majumdar, M. K. and Williams, D. A. 1992. Minipreparations of plasmid DNA directly from cell culture by the boiling method. Biotechniques 13: 336.
    Nover, L., Scharf, K. D., Gagliardi, D., Vergne, P., Czarnecka-Verner, E. and Gurley, W. B. 1996. The HSF world: classification of plant heat stress transcription factors. Cell Stress Chap. 1: 215-223.
    Pearson, W. R. 1990. Rapid and Sensitive Sequence Comparison with FASTP and FASTA. Methods in Enzymology 183: 63-98.
    Pilon, M. and Schekman, R. 1999. Protein translocation: how Hsp70 pulls it off. Cell 97: 679-682.
    Sabehat, A., Weiss, D. and Lurie, S. 1996. The correlation between heat-shock protein accumulation and persistence and chilling tolerance in tomato fruit. Plant Physiol. 110: 531-537.
    Sambrook, J., Fritsch, E. F. and Maniatis, T. A. 1989. Molecular cloning: A laboratory manual, 2nd Edition, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
    Schoffl, F., Prandl, R. and Reindl, A. 1998. Regulation of the heat-shock response. Plant Physiol. 117: 1135-1141.
    Suh, W. C., Lu, C. Z. and Gross, C. A. 1999. Structural features required for the interaction of the Hsp70 molecular chaperone DnaK with its cochaperone DnaJ. J. Biol. Chem. 274: 30534-30539.
    Sun, S. W., Chung, M. C. and Lin, T. Y. 1996. The structure and expression of an hsc70 gene from Lycopersicon esculentum. Gene 170: 237-241.
    Szabo, A., Korszun, R., Hartl, F. U. and Flanagan, J. 1996. A zinc finger-like domain of the molecular chaperone DnaJ is involved in binding to denatured protein substrates. EMBO J. 15: 408-417.
    Wang, C. and Lin, B. L. 1993. The disappearance of an hsc70 species in mung bean seed during germination: purification and characterization of the protein. Plant Mol. Biol. 21: 317-329.
    Winter, J., Wright, R., Duck, N., Gasser, C., Fraley, R. and Shah, D. 1988. The inhibition of petunia hsp70 mRNA processing during CdCl2 stress. Mol. Gen. Genet. 211: 315-319.
    Wu, S. J. and Wang, C. 1999. Binding of heptapeptides or unfolded proteins to the chimeric C-terminal domains of 70-kDa heat shock cognate protein. Eur. J. Biochem. 259: 449-455.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE