簡易檢索 / 詳目顯示

研究生: 陳雅青
CHEN YA CHING
論文名稱: 非線性邊界值微分方程組之分支點及多重解路徑探討
Numerical Investigation for Banch Points And Multiple Solutions of Nonlinear Boundary-Valued Differential Equations
指導教授: 簡國清
Jen Kuo Ching
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 129
中文關鍵詞: 分歧點隱函數定理解分支割線預測法牛頓迭代法虛擬弧長延拓法
外文關鍵詞: Bifurcation point, Implicit function theorem, Solution branches, Secant-predictor method, Newton’s interative method, pseudo-arclength continuation method
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文,旨在探討非線性邊界值微分方程組之分支點及多重解路徑.
    首先,我們以隱函數定理為基礎,推導計算出分支點,並引用有限維度Liapunov-Schmidt降階法、解分支方向、割線預測法、牛頓迭代法以及虛擬弧長延拓法等數值方法來延拓出所有通過分支點的解分支路徑.
    最後,我們並分別選擇特定的變數作為參數,利用一個非線性邊界值微分方程組模型求得存在的分支點及多重解路徑,使我們更清楚了解該系統的分歧現象與定性上的變化.


    The main purpose of this thesis is to investigate branch points and multiple solutions of nonlinear boundary-valued differential equations.First,we use implicit function theorem as the foundation to calculate the branch points.We also quote the numerical method of finite dimensional Liapunov-Schmidt reduction method,the direction solution branch,secant predictor method,Newton’s interative method,and pseudo–arclength continuation method,to continue all solution branches and pass through branch points.
    To solve the existed branch points and solution paths of the model,we also investigate the solution structure of the model by choosing a specific variable as the parameter.The results help us to understand the bifurcation phenomenon and the variety of qualitative properties of the model.

    第一章 緒論...........................................1 第二章 分歧理論與虛擬弧長延拓法..........................3 2.1 分歧問題........................................3 2.2 分歧理論與隱函數定理..............................5 2.3 局部延拓法 ......................................7 2.4 虛擬弧長延拓法...................................10 第三章 非線性邊界值微分方程的分歧問題.....................12 3.1 分支點的求法.....................................12 3.2 分支點解分支方向..................................23 3.3 解分支延拓之數值計算..............................32 3.4 演算法..........................................34 第四章 數值實驗........................................38 4.1 實驗4-1.........................................39 4.2 實驗4-2.........................................71 4.3 實驗4-3 .......................................108 第五章 結論與檢討.......................................27 參考文獻........................................128

    [1]Allgower, E.L. and Chien, C.S., Continuation and local perturbation for multiple bifurcation, SIAM J. SCI. STAT.Comput., 7, pp.1265-1281, (1986).

    [2]Atkinson, K.E., The Numerical Solution of Bifurcation Problems,SIAMJ.
    Numer. Anal.,14(4), pp. 584-599, 1997.

    [3] Brezzi, F., Rappaz, J.and Raviart, P.A., Finite Dimensional Approximation of a Bifurcation Problems, Numer. Math., 36, pp.1-251-25,1980.

    [4] Choi, Y. S., Jen, K. C., (簡國清) and McKenna, P. J., The Structure of the Solution Set for Periodic Oscillations in a Suspension Bridge Model, IMA J. Appl. Math., 47, pp.283-306, (1991)

    [5]Crandall,M.G., An Introduction to Constructive Aspects of Bifurcation Theorem, edited by P.H. Rabinowtiz, Academic Press, pp. 1-35,1977.

    [6]Crandall,M.G., An Introduction to Constructive Aspects of Bifurcation and The Implicit Function Theorem, Application of bifurcation Theorem, edited by P.H. Rabinowtiz, Academic Press, New York,1977.

    [7]Crandall, M. G., and Rabinowitz, P.H. Mathematical Theory of Bifurcation,Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos, C.and Bessis, D., NATO Advanced Study Institute Series, 1979.

    [8]Crandall, M. G., An Introduction to Constructive Aspects of Bifurcation Theorem, edited by P. H. Rabinowtiz, Academic Press, pp.1-35, 1977.

    [9]Iooss,G and Joseph,D.D., Elementary Stability and Bifurcation Theory,
    Spring-Verleg, 1989.

    [10] Jepson,A.D. and Spence,A., Numerical Methods for Bifurcation Problems, State of the Art in Numeriacl Analysis,edit bu A. Iserles, MJD Powell,(1987).

    [11] Kubicek,M. and Marek,M., Computational Methods in Bifurcation Theory and Dissipative Structures,Springer-Verlag, New York, (1983).

    [12] Keller, H. B., in “Recent Advances in Numerical Analysis”, Ed. by C. de Boor and G. H. Golub, Academic Press, New York, p.73, 1978.

    [13] Keller, H. B. Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited By Rabinowitz, P. H. Academic Press, pp.359-384,1977.

    [14] Keller, H. B. Lectures on Numerical Methods in Bifurcation Problems,TATA Institute of Fundamental Research , Springer-Verlag, 1987.

    [15] Kupper, T., Mittelmann, H. D. and Weber, H. (eds.), Numerical Methods for Bifurcation Problems, Birkhauser, Basel.1984.

    [16] Rheinboldt, W. C., Solution Fields of Nonlinear Equations and Continuation Methods, SIAM J. Numer. Anal., 17, pp.221-237, 1980.

    [17] Rheinboldt,W.C., Numerical Analysis of Parameterized Nonlinear Equations, Wiley(New York).

    [18] Wacker, H.(ed-), Continuation Methods, Academic Press, NewYork,1978.

    [19]林慧芬,非線性邊界值問題分歧點計算及其解路徑延拓,新竹教育大學碩士論文, 2005.
    [20]陳彥芬,一個超導模板模型解路徑之分歧問題探討,新竹教育大學碩士論文, 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE