研究生: |
吳珮玉 |
---|---|
論文名稱: |
人類粒線體酵素複合體I的NDUFS8次單元蛋白質及其鐵硫中心之功能研究 The functional analysis of NADH dehydrogenase (ubiquinone) Fe-S protein 8 (NDUFS8) subunit and its iron-sulfur clusters in human mitochondrial complex I |
指導教授: | 高茂傑 |
口試委員: |
李岳倫
彭明德 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 70 |
中文關鍵詞: | 粒線體 、粒線體酵素複合體I 、NDUFS8 、鐵硫中心 、呼吸體 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
NADH dehydrogenase (ubiquinone) Fe-S protein 8,簡稱NDUFS8,為粒線體酵素複合體I中由細胞核基因體組表現的核心蛋白。此蛋白具有兩個含高度保留半胱胺酸的模組,可幫助形成兩組[4Fe-4S]的鐵硫中心,而且這些鐵硫中心在酵素複合體I電子傳遞中扮演重要的角色。NDUFS8的缺失是第一個被證實與Leigh症候群有關聯性的酵素複合體I之成分蛋白,其也陸續被證實與躁鬱症以及粒線體腦肌病等神經疾病相關。在本研究中,我們是利用核酸干擾 (RNAi) 技術抑制T-REx293細胞中NDUFS8的表現,藉此來探討NDUFS8產生缺失後在人類粒線體酵素複合體I所造成的影響。實驗結果顯示,在只含有半乳糖的培養條件下,NDUFS8受到抑制的細胞生長速度會比在只含有葡萄糖的培養條件下之細胞還慢,甚至導致細胞死亡。在酵素複合體I的功能分析中也顯示,減少NDUFS8的表現會使酵素複合體I的結構完整性以及穩定性受到影響,而其氧化NADH的能力也因此下降。此外,它也使得粒線體膜電位下降,進而影響細胞內ATP的生成量減少。同時NDUFS8的表現量受到抑制也使得酵素複合體III和IV之次單元的蛋白表現量和其結構之穩定受到影響。由以上實驗結果推論,NDUFS8在維持酵素複合體I的功能和結構中扮演了關鍵的角色,甚至也參與了穩定呼吸體的結構。此外為了研究NDUFS8鐵硫簇的模組中具有的高度保留之8個半胱胺酸,我們利用定點突變的方式,探討這些半胱胺酸產生變異是否對於粒線體酵素複合體I執行功能或是結構穩定產生影響。實驗結果與在Rhodobacter capsulatus、Neurospora crassa和Escherichia coli等物種發現的結果不一樣。將人類的NDUFS8鐵硫中心模組中的單一個半胱胺酸突變成為絲胺酸,是不會影響NDUFS8被運輸至粒線體,也不會影響酵素複合體I的結構穩定性以及其活性功能。
1. Lill R (2009) Function and biogenesis of iron-sulphur proteins. Nature 460: 831-838.
2. Kowaltowski AJ, de Souza-Pinto NC, Castilho RF, Vercesi AE (2009) Mitochondria and reactive oxygen species. Free Radic Biol Med 47: 333-343.
3. Chance BaW, G. R. (2006) The Respiratory Chain and Oxidative Phosphorylation. in Advances in Enzymology and Related Areas of Molecular Biology Volume 17 (ed F. F. Nord).
4. Efremov RG, Baradaran R, Sazanov LA (2010) The architecture of respiratory complex I. Nature 465: 441-445.
5. DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. N Engl J Med 348: 2656-2668.
6. Munnich A, Rustin P, Rotig A, Chretien D, Bonnefont JP, et al. (1992) Clinical aspects of mitochondrial disorders. J Inherit Metab Dis 15: 448-455.
7. Hutchison CA, 3rd, Newbold JE, Potter SS, Edgell MH (1974) Maternal inheritance of mammalian mitochondrial DNA. Nature 251: 536-538.
8. Ivanov PL, Wadhams MJ, Roby RK, Holland MM, Weedn VW, et al. (1996) Mitochondrial DNA sequence heteroplasmy in the Grand Duke of Russia Georgij Romanov establishes the authenticity of the remains of Tsar Nicholas II. Nat Genet 12: 417-420.
9. Wallace DC (1986) Mitotic segregation of mitochondrial DNAs in human cell hybrids and expression of chloramphenicol resistance. Somat Cell Mol Genet 12: 41-49.
10. Janssen RJ, van den Heuvel LP, Smeitink JA (2004) Genetic defects in the oxidative phosphorylation (OXPHOS) system. Expert Rev Mol Diagn 4: 143-156.
11. Man PY, Griffiths PG, Brown DT, Howell N, Turnbull DM, et al. (2003) The epidemiology of Leber hereditary optic neuropathy in the North East of England. Am J Hum Genet 72: 333-339.
12. Janssen RJ, Nijtmans LG, van den Heuvel LP, Smeitink JA (2006) Mitochondrial complex I: structure, function and pathology. J Inherit Metab Dis 29: 499-515.
13. Leonard K, Haiker H, Weiss H (1987) Three-dimensional structure of NADH: ubiquinone reductase (complex I) from Neurospora mitochondria determined by electron microscopy of membrane crystals. J Mol Biol 194: 277-286.
14. Hofhaus G, Weiss H, Leonard K (1991) Electron microscopic analysis of the peripheral and membrane parts of mitochondrial NADH dehydrogenase (complex I). J Mol Biol 221: 1027-1043.
15. Finel M (1998) Organization and evolution of structural elements within complex I. Biochim Biophys Acta 1364: 112-121.
16. Friedrich T, Scheide D (2000) The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases. FEBS Lett 479: 1-5.
17. Hedderich R (2004) Energy-converting [NiFe] hydrogenases from archaea and extremophiles: ancestors of complex I. J Bioenerg Biomembr 36: 65-75.
18. Leif H, Weidner U, Berger A, Spehr V, Braun M, et al. (1993) Escherichia coli NADH dehydrogenase I, a minimal form of the mitochondrial complex I. Biochem Soc Trans 21: 998-1001.
19. Radermacher M, Ruiz T, Clason T, Benjamin S, Brandt U, et al. (2006) The three-dimensional structure of complex I from Yarrowia lipolytica: a highly dynamic enzyme. J Struct Biol 154: 269-279.
20. Friedrich T, Bottcher B (2004) The gross structure of the respiratory complex I: a Lego System. Biochim Biophys Acta 1608: 1-9.
21. Sazanov LA, Walker JE (2000) Cryo-electron crystallography of two sub-complexes of bovine complex I reveals the relationship between the membrane and peripheral arms. J Mol Biol 302: 455-464.
22. Sazanov LA, Peak-Chew SY, Fearnley IM, Walker JE (2000) Resolution of the membrane domain of bovine complex I into subcomplexes: implications for the structural organization of the enzyme. Biochemistry 39: 7229-7235.
23. Brandt U (2006) Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem 75: 69-92.
24. Hinchliffe P, Sazanov LA (2005) Organization of iron-sulfur clusters in respiratory complex I. Science 309: 771-774.
25. Sazanov LA, Hinchliffe P (2006) Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311: 1430-1436.
26. Hunte C, Zickermann V, Brandt U (2010) Functional modules and structural basis of conformational coupling in mitochondrial complex I. Science 329: 448-451.
27. Efremov RG, Sazanov LA (2011) Structure of the membrane domain of respiratory complex I. Nature 476: 414-420.
28. Nouws J, Nijtmans LG, Smeitink JA, Vogel RO (2012) Assembly factors as a new class of disease genes for mitochondrial complex I deficiency: cause, pathology and treatment options. Brain 135: 12-22.
29. Videira A (1998) Complex I from the fungus Neurospora crassa. Biochim Biophys Acta 1364: 89-100.
30. Vogel R, Nijtmans L, Ugalde C, van den Heuvel L, Smeitink J (2004) Complex I assembly: a puzzling problem. Curr Opin Neurol 17: 179-186.
31. Braun M, Bungert S, Friedrich T (1998) Characterization of the overproduced NADH dehydrogenase fragment of the NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli. Biochemistry 37: 1861-1867.
32. Kervinen M, Hinttala R, Helander HM, Kurki S, Uusimaa J, et al. (2006) The MELAS mutations 3946 and 3949 perturb the critical structure in a conserved loop of the ND1 subunit of mitochondrial complex I. Hum Mol Genet 15: 2543-2552.
33. Kao MC, Di Bernardo S, Nakamaru-Ogiso E, Miyoshi H, Matsuno-Yagi A, et al. (2005) Characterization of the membrane domain subunit NuoJ (ND6) of the NADH-quinone oxidoreductase from Escherichia coli by chromosomal DNA manipulation. Biochemistry 44: 3562-3571.
34. Holt PJ, Morgan DJ, Sazanov LA (2003) The location of NuoL and NuoM subunits in the membrane domain of the Escherichia coli complex I: implications for the mechanism of proton pumping. J Biol Chem 278: 43114-43120.
35. Baranova EA, Morgan DJ, Sazanov LA (2007) Single particle analysis confirms distal location of subunits NuoL and NuoM in Escherichia coli complex I. J Struct Biol 159: 238-242.
36. Remacle C, Duby F, Cardol P, Matagne RF (2001) Mutations inactivating mitochondrial genes in Chlamydomonas reinhardtii. Biochem Soc Trans 29: 442-446.
37. Cardol P, Matagne RF, Remacle C (2002) Impact of mutations affecting ND mitochondria-encoded subunits on the activity and assembly of complex I in Chlamydomonas. Implication for the structural organization of the enzyme. J Mol Biol 319: 1211-1221.
38. Cardol P, Lapaille M, Minet P, Franck F, Matagne RF, et al. (2006) ND3 and ND4L subunits of mitochondrial complex I, both nucleus encoded in Chlamydomonas reinhardtii, are required for activity and assembly of the enzyme. Eukaryot Cell 5: 1460-1467.
39. Remacle C, Barbieri MR, Cardol P, Hamel PP (2008) Eukaryotic complex I: functional diversity and experimental systems to unravel the assembly process. Mol Genet Genomics 280: 93-110.
40. Tuschen G, Sackmann U, Nehls U, Haiker H, Buse G, et al. (1990) Assembly of NADH: ubiquinone reductase (complex I) in Neurospora mitochondria. Independent pathways of nuclear-encoded and mitochondrially encoded subunits. J Mol Biol 213: 845-857.
41. Videira A, Duarte M (2002) From NADH to ubiquinone in Neurospora mitochondria. Biochim Biophys Acta 1555: 187-191.
42. Perales-Clemente E, Fernandez-Vizarra E, Acin-Perez R, Movilla N, Bayona-Bafaluy MP, et al. (2010) Five entry points of the mitochondrially encoded subunits in mammalian complex I assembly. Mol Cell Biol 30: 3038-3047.
43. Yadava N, Houchens T, Potluri P, Scheffler IE (2004) Development and characterization of a conditional mitochondrial complex I assembly system. J Biol Chem 279: 12406-12413.
44. Scheffler IE, Yadava N, Potluri P (2004) Molecular genetics of complex I-deficient Chinese hamster cell lines. Biochim Biophys Acta 1659: 160-171.
45. Bourges I, Ramus C, Mousson de Camaret B, Beugnot R, Remacle C, et al. (2004) Structural organization of mitochondrial human complex I: role of the ND4 and ND5 mitochondria-encoded subunits and interaction with prohibitin. Biochem J 383: 491-499.
46. Potluri P, Yadava N, Scheffler IE (2004) The role of the ESSS protein in the assembly of a functional and stable mammalian mitochondrial complex I (NADH-ubiquinone oxidoreductase). Eur J Biochem 271: 3265-3273.
47. Ugalde C, Vogel R, Huijbens R, Van Den Heuvel B, Smeitink J, et al. (2004) Human mitochondrial complex I assembles through the combination of evolutionary conserved modules: a framework to interpret complex I deficiencies. Hum Mol Genet 13: 2461-2472.
48. Vogel RO, Dieteren CE, van den Heuvel LP, Willems PH, Smeitink JA, et al. (2007) Identification of mitochondrial complex I assembly intermediates by tracing tagged NDUFS3 demonstrates the entry point of mitochondrial subunits. J Biol Chem 282: 7582-7590.
49. Lazarou M, McKenzie M, Ohtake A, Thorburn DR, Ryan MT (2007) Analysis of the assembly profiles for mitochondrial- and nuclear-DNA-encoded subunits into complex I. Mol Cell Biol 27: 4228-4237.
50. Antonicka H, Ogilvie I, Taivassalo T, Anitori RP, Haller RG, et al. (2003) Identification and characterization of a common set of complex I assembly intermediates in mitochondria from patients with complex I deficiency. J Biol Chem 278: 43081-43088.
51. Lazarou M, Thorburn DR, Ryan MT, McKenzie M (2009) Assembly of mitochondrial complex I and defects in disease. Biochim Biophys Acta 1793: 78-88.
52. Koopman WJ, Nijtmans LG, Dieteren CE, Roestenberg P, Valsecchi F, et al. (2010) Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxid Redox Signal 12: 1431-1470.
53. Mimaki M, Wang X, McKenzie M, Thorburn DR, Ryan MT (2012) Understanding mitochondrial complex I assembly in health and disease. Biochim Biophys Acta 1817: 851-862.
54. Ugalde C, Janssen RJ, van den Heuvel LP, Smeitink JA, Nijtmans LG (2004) Differences in assembly or stability of complex I and other mitochondrial OXPHOS complexes in inherited complex I deficiency. Hum Mol Genet 13: 659-667.
55. Chance B, Williams GR (1955) A method for the localization of sites for oxidative phosphorylation. Nature 176: 250-254.
56. Boekema EJ, Braun HP (2007) Supramolecular structure of the mitochondrial oxidative phosphorylation system. J Biol Chem 282: 1-4.
57. D'Aurelio M, Gajewski CD, Lenaz G, Manfredi G (2006) Respiratory chain supercomplexes set the threshold for respiration defects in human mtDNA mutant cybrids. Hum Mol Genet 15: 2157-2169.
58. Hackenbrock CR, Chazotte B, Gupte SS (1986) The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport. J Bioenerg Biomembr 18: 331-368.
59. Acin-Perez R, Fernandez-Silva P, Peleato ML, Perez-Martos A, Enriquez JA (2008) Respiratory active mitochondrial supercomplexes. Mol Cell 32: 529-539.
60. Schafer E, Seelert H, Reifschneider NH, Krause F, Dencher NA, et al. (2006) Architecture of active mammalian respiratory chain supercomplexes. J Biol Chem 281: 15370-15375.
61. Moreno-Lastres D, Fontanesi F, Garcia-Consuegra I, Martin MA, Arenas J, et al. (2012) Mitochondrial complex I plays an essential role in human respirasome assembly. Cell Metab 15: 324-335.
62. Schagger H, de Coo R, Bauer MF, Hofmann S, Godinot C, et al. (2004) Significance of respirasomes for the assembly/stability of human respiratory chain complex I. J Biol Chem 279: 36349-36353.
63. de Sury R, Martinez P, Procaccio V, Lunardi J, Issartel JP (1998) Genomic structure of the human NDUFS8 gene coding for the iron-sulfur TYKY subunit of the mitochondrial NADH:ubiquinone oxidoreductase. Gene 215: 1-10.
64. Procaccio V, Depetris D, Soularue P, Mattei MG, Lunardi J, et al. (1997) cDNA sequence and chromosomal localization of the NDUFS8 human gene coding for the 23 kDa subunit of the mitochondrial complex I. Biochim Biophys Acta 1351: 37-41.
65. Claros MG, Vincens P (1996) Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 241: 779-786.
66. Rasmussen T, Scheide D, Brors B, Kintscher L, Weiss H, et al. (2001) Identification of two tetranuclear FeS clusters on the ferredoxin-type subunit of NADH:ubiquinone oxidoreductase (complex I). Biochemistry 40: 6124-6131.
67. Yano T, Magnitsky S, Sled VD, Ohnishi T, Yagi T (1999) Characterization of the putative 2x[4Fe-4S]-binding NQO9 subunit of the proton-translocating NADH-quinone oxidoreductase (NDH-1) of Paracoccus denitrificans. Expression, reconstitution, and EPR characterization. J Biol Chem 274: 28598-28605.
68. Chevallet M, Dupuis A, Lunardi J, van Belzen R, Albracht SP, et al. (1997) The NuoI subunit of the Rhodobacter capsulatus respiratory Complex I (equivalent to the bovine TYKY subunit) is required for proper assembly of the membraneous and peripheral domains of the enzyme. Eur J Biochem 250: 451-458.
69. Chevallet M, Dupuis A, Issartel JP, Lunardi J, van Belzen R, et al. (2003) Two EPR-detectable [4Fe-4S] clusters, N2a and N2b, are bound to the NuoI (TYKY) subunit of NADH:ubiquinone oxidoreductase (Complex I) from Rhodobacter capsulatus. Biochim Biophys Acta 1557: 51-66.
70. Duarte M, Videira A (2000) Respiratory chain complex I is essential for sexual development in neurospora and binding of iron sulfur clusters are required for enzyme assembly. Genetics 156: 607-615.
71. Sinha PK, Nakamaru-Ogiso E, Torres-Bacete J, Sato M, Castro-Guerrero N, et al. (2012) Electron Transfer in subunit NuoI (TYKY) of Escherichia coli NDH-1 (NADH:quinone oxidoreductase). J Biol Chem 287: 17363-17373.
72. Loeffen J, Smeitink J, Triepels R, Smeets R, Schuelke M, et al. (1998) The first nuclear-encoded complex I mutation in a patient with Leigh syndrome. Am J Hum Genet 63: 1598-1608.
73. Procaccio V, Wallace DC (2004) Late-onset Leigh syndrome in a patient with mitochondrial complex I NDUFS8 mutations. Neurology 62: 1899-1901.
74. Ahlers PM, Garofano A, Kerscher SJ, Brandt U (2000) Application of the obligate aerobic yeast Yarrowia lipolytica as a eucaryotic model to analyse Leigh syndrome mutations in the complex I core subunits PSST and TYKY. Biochim Biophys Acta 1459: 258-265.
75. Duarte M, Schulte U, Ushakova AV, Videira A (2005) Neurospora strains harboring mitochondrial disease-associated mutations in iron-sulfur subunits of complex I. Genetics 171: 91-99.
76. Pieczenik SR, Neustadt J (2007) Mitochondrial dysfunction and molecular pathways of disease. Exp Mol Pathol 83: 84-92.
77. Sun X, Wang JF, Tseng M, Young LT (2006) Downregulation in components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder. J Psychiatry Neurosci 31: 189-196.
78. Hinttala R, Uusimaa J, Remes AM, Rantala H, Hassinen IE, et al. (2005) Sequence analysis of nuclear genes encoding functionally important complex I subunits in children with encephalomyopathy. J Mol Med (Berl) 83: 786-794.
79. Chang J-Y (2010) The functional study of mitochondrial NADH dehydrogenase (ubiquinone) Fe-S protein 8 and characterization of its mitochondrial targeting sequence: National Tsing Hua University (Master studient).
80. Pearse AG (1957) Intracellular localisation of dehydrogenase systems using monotetrazolium salts and metal chelation of their formazans. J Histochem Cytochem 5: 515-527.
81. Wong A, Cortopassi GA (2002) High-throughput measurement of mitochondrial membrane potential in a neural cell line using a fluorescence plate reader. Biochem Biophys Res Commun 298: 750-754.
82. BH. R (1996) Use of fibroblast and lymphoblast cultures for detection of respiratory chain defects. Methods Enzymol 264: 454-464.
83. Schagger H, von Jagow G (1991) Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal Biochem 199: 223-231.
84. Genova ML, Castelluccio C, Fato R, Parenti Castelli G, Merlo Pich M, et al. (1995) Major changes in complex I activity in mitochondria from aged rats may not be detected by direct assay of NADH:coenzyme Q reductase. Biochem J 311 ( Pt 1): 105-109.
85. Chen LB (1988) Mitochondrial membrane potential in living cells. Annu Rev Cell Biol 4: 155-181.
86. Nicholls DG (2004) Mitochondrial membrane potential and aging. Aging Cell 3: 35-40.
87. Triepels RH, Van Den Heuvel LP, Trijbels JM, Smeitink JA (2001) Respiratory chain complex I deficiency. Am J Med Genet 106: 37-45.
88. Loeffen J, Elpeleg O, Smeitink J, Smeets R, Stockler-Ipsiroglu S, et al. (2001) Mutations in the complex I NDUFS2 gene of patients with cardiomyopathy and encephalomyopathy. Ann Neurol 49: 195-201.
89. Budde SM, van den Heuvel LP, Janssen AJ, Smeets RJ, Buskens CA, et al. (2000) Combined enzymatic complex I and III deficiency associated with mutations in the nuclear encoded NDUFS4 gene. Biochem Biophys Res Commun 275: 63-68.
90. Triepels RH, van den Heuvel LP, Loeffen JL, Buskens CA, Smeets RJ, et al. (1999) Leigh syndrome associated with a mutation in the NDUFS7 (PSST) nuclear encoded subunit of complex I. Ann Neurol 45: 787-790.
91. Schuelke M, Smeitink J, Mariman E, Loeffen J, Plecko B, et al. (1999) Mutant NDUFV1 subunit of mitochondrial complex I causes leukodystrophy and myoclonic epilepsy. Nat Genet 21: 260-261.
92. Benit P, Beugnot R, Chretien D, Giurgea I, De Lonlay-Debeney P, et al. (2003) Mutant NDUFV2 subunit of mitochondrial complex I causes early onset hypertrophic cardiomyopathy and encephalopathy. Hum Mutat 21: 582-586.
93. Benit P, Slama A, Cartault F, Giurgea I, Chretien D, et al. (2004) Mutant NDUFS3 subunit of mitochondrial complex I causes Leigh syndrome. J Med Genet 41: 14-17.
94. Brookes PS (2005) Mitochondrial H(+) leak and ROS generation: an odd couple. Free Radic Biol Med 38: 12-23.
95. Visch HJ, Koopman WJ, Leusink A, van Emst-de Vries SE, van den Heuvel LW, et al. (2006) Decreased agonist-stimulated mitochondrial ATP production caused by a pathological reduction in endoplasmic reticulum calcium content in human complex I deficiency. Biochim Biophys Acta 1762: 115-123.
96. Distelmaier F, Visch HJ, Smeitink JA, Mayatepek E, Koopman WJ, et al. (2009) The antioxidant Trolox restores mitochondrial membrane potential and Ca2+ -stimulated ATP production in human complex I deficiency. J Mol Med (Berl) 87: 515-522.
97. Nicholls DG, Ward MW (2000) Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci 23: 166-174.
98. Li Y, D'Aurelio M, Deng JH, Park JS, Manfredi G, et al. (2007) An assembled complex IV maintains the stability and activity of complex I in mammalian mitochondria. J Biol Chem 282: 17557-17562.
99. Acin-Perez R, Bayona-Bafaluy MP, Fernandez-Silva P, Moreno-Loshuertos R, Perez-Martos A, et al. (2004) Respiratory complex III is required to maintain complex I in mammalian mitochondria. Mol Cell 13: 805-815.
100. Lamantea E, Carrara F, Mariotti C, Morandi L, Tiranti V, et al. (2002) A novel nonsense mutation (Q352X) in the mitochondrial cytochrome b gene associated with a combined deficiency of complexes I and III. Neuromuscul Disord 12: 49-52.
101. Moran M, Marin-Buera L, Gil-Borlado MC, Rivera H, Blazquez A, et al. (2010) Cellular pathophysiological consequences of BCS1L mutations in mitochondrial complex III enzyme deficiency. Hum Mutat 31: 930-941.
102. Diaz F, Fukui H, Garcia S, Moraes CT (2006) Cytochrome c oxidase is required for the assembly/stability of respiratory complex I in mouse fibroblasts. Mol Cell Biol 26: 4872-4881.