研究生: |
侯泰成 Hou, Tai Cheng |
---|---|
論文名稱: |
拆卸聚集誘導放光式近紅外螢光探針 Near-Infrared Fluorescence Activation Probes based on Disassembly-Induced Emission Cyanine Dye |
指導教授: |
陳貴通
Tan, Kui Thong |
口試委員: |
林俊成
Lin, Chun Cheng 林伯樵 Lin, Po Chiau |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 123 |
中文關鍵詞: | 螢光探針 、紅外光 、聚集 |
外文關鍵詞: | fluorescence probe, near IR, aggregate |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近來螢光分子探針,大部分是用在酶蛋白偵測上,如醣苷酶(glycosidases)、蛋白酶(proteases)等。其方法是透過酶的催化使探針上的非螢光基團發生結構變化,使其轉變成具螢光性質的基團。本論文開發以Cy5螢光探針為主的非酶蛋白偵測方法,在聚次甲基的γ位有苯基取代的Cy5螢光分子對蛋白質之親和性配體結合後,可不經由酶的催化,選擇性的偵測蛋白質。進一步的研究發現,此螢光探針具自組裝性質,並會形成J-型聚集使螢光淬熄。當目標分析物存在時,因配體和目標物的結合使得螢光探針的聚集拆卸,並發出強烈的近紅外螢光。基於探針的自組裝/拆卸使得螢光顯著增益的性質,本論文設計了一系列螢光探針,並可成功標記癌細胞表面之標記物:跨膜型碳酸酐酶IX。
Abstract
Currently most of the fluorogenic probes are designed for the detection of enzymes which work by converting the nonfluorescence substrate into the fluorescence product via an enzymatic reaction. On the other hand, the design of fluorogenic probes for non-enzymatic proteins remains a great challenge. Herein, we report a general strategy to create near-IR fluorogenic probes, where a small molecule ligand is conjugated to a novel γ-phenyl-substituted Cy5 fluorophore, for the selective detection of proteins through a non-enzymatic process. Detail mechanistic studies reveal that the probes self-assemble to form fluorescence-quenched J-type aggregate. In the presence of target analyte, bright fluorescence in the near-IR region is emitted through the recognition-induced disassembly of the probe aggregate. This Cy5 fluorophore is a unique self-assembly/disassembly dye as it gives remarkable fluorescence enhancement. Based on the same design, three different fluorogenic probes were constructed and one of them was applied for the no-wash imaging of tumor cells for the detection of hypoxia-induced cancer-specific biomarker, transmembrane-type carbonic anhydrase IX.
[1] J. A. Adams, Chem. Rev. 2001, 101, 2271-2290.
[2] C. D. Williams, B. Oxon, H. Lond, Bull. W.H.O. 2003, 81, 912.
[3] A. Radzicka, R. Wolfenden, Science 1995, 267, 90-93.
[4] G. Behera, P. Behera, B. K. Mishra, J. Surface Sci. Technol. 2007, 23, 1.
[5] http://www.lumiprobe.com/tech/cyanine-dyes.
[6] R. B. Mujumdar, L. A. Ernst, S. R. Mujumdar, C. J. Lewis, A. S. Waggoner, Bioconjugate Chem. 1993, 4, 105-111.
[7] A. S. Waggoner, Google Patents, 1997.
[8] S. M. Yarmoluk, D. V. Kryvorotenko, A. O. Balanda, M. Y. Losytskyy, V. B. Kovalska, Dyes Pigments 2001, 51, 41-49.
[9] H. Vogel, Photogr. Sci. Eng 1973, 1, 235.
[10] W. K. Moon, Y. Lin, T. O'Loughlin, Y. Tang, D. E. Kim, R. Weissleder, C.H. Tung, Bioconjugate Chem. 2003, 14, 539-545.
[11] H. J. Gruber, G. Kada, B. Pragl, C. Riener, C. D. Hahn, G. S. Harms, W. Ahrer, T. G. Dax, K. Hohenthanner, H. G. Knaus, Bioconjugate Chem. 2000, 11, 161-166.
[12] F. Würthner, T. E. Kaiser, C. R. Saha‐Möller, Angew. Chem. Int. Ed. 2011, 50, 3376-3410.
[13] E. E. Jelley, Nature 1936, 138, 1009-1010.
[14] G. Scheibe, L. Kandler, H. Ecker, Naturwissenschaften 1937, 25, 75-75.
[15] Y. Hong, J. W. Lam, B. Z. Tang, Chem. Soc. Rev. 2011, 40, 5361-5388.
[16] G. Y. Wiederschain, Biochemistry (Moscow) 2011, 76, 1276-1276.
[17] A. R. Lippert, E. J. New, C. J. Chang, J. Am. Chem. Soc. 2011, 133, 10078-10080.
[18] S. Tyagi, F. R. Kramer, Nat. Biotechnol. 1996, 14, 303-308.
[19] A. G. Frutos, S. Pal, M. Quesada, J. Lahiri, J. Am. Chem. Soc. 2002, 124, 2396-2397.
[20] H. Du, M. D. Disney, B. L. Miller, T. D. Krauss, J. Am. Chem. Soc. 2003, 125, 4012-4013.
[21] M. R. Pincus, Biopolymers 1992, 32, 347-351.
[22] J. K. Weltman, R. P. Szaro, A. R. Frackelton, R. M. Dowben, J. R. Bunting, R. E. Cathou, J. Biol. Chem. 1973, 248, 3173-3177.
[23] H. Lyon, P. Prentoe, Ugeskr. Laeg. 1997, 159, 4285-4285.
[24] B. Wang, C. Yu, Angew. Chem. Int. Ed. 2010, 49, 1485-1488.
[25] J. M. Lehn, Science 1993, 260, 1762-1763.
[26] G. V. Oshovsky, D. N. Reinhoudt, W. Verboom, Angew. Chem. Int. Ed. 2007, 46, 2366-2393.
[27] D. Zhai, W. Xu, L. Zhang, Y. T. Chang, Chem. Soc. Rev. 2014, 43, 2402-2411.
[28] K. Mizusawa, Y. Takaoka, I. Hamachi, J. Am. Chem. Soc. 2012, 134, 13386-13395.
[29] T. Yoshii, K. Mizusawa, Y. Takaoka, I. Hamachi, J. Am. Chem. Soc. 2014, 136, 16635-16642.
[30] F. Würthner, Chem. Commun. 2004, 1564-1579.
[31] A. D. Li, W. Wang, L. Q. Wang, Chem. Eur. J. 2003, 9, 4594-4601.
[32] K. C. Hannah, B. A. Armitage, Acc. Chem. Res. 2004, 37, 845-853.
[33] R. F. Pasternack, C. Bustamante, P. J. Collings, A. Giannetto, E. J. Gibbs, J. Am. Chem. Soc. 1993, 115, 5393-5399.
[34] M. Wang, G. L. Silva, B. A. Armitage, J. Am. Chem. Soc. 2000, 122, 9977-9986.
[35] J. B. Birks, Organic molecular photophysics, Vol. 2, John Wiley & Sons, 1975.
[36] J. Luo, Z. Xie, J. W. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, Chem. Commun. 2001, 1740-1741.
[37] H. Tong, Y. Hong, Y. Dong, M. Häussler, Z. Li, J. W. Y. Lam, Y. Dong, H. H. Y. Sung, I. D. Williams, B. Z. Tang, J. Phys. Chem. B 2007, 111, 11817-11823.
[38] H. Lis, N. Sharon, Chem. Rev. 1998, 98, 637-674.
[39] T. Sanji, K. Shiraishi, M. Tanaka, ACS Appl. Mater 2008, 1, 270-273.
[40] N. L. Rosi, C. A. Mirkin, Chem. Rev. 2005, 105, 1547-1562.
[41] S. Basiruddin, A. Saha, N. Pradhan, N. R. Jana, Langmuir 2010, 26, 7475-7481.
[42] R. Haugland, Invitrogen, Carlsbad 2005, 11-37.
[43] D. L. Sackett, J. Wolff, Anal. Biochem. 1987, 167, 228-234.
[44] I. A. Karpenko, A. S. Klymchenko, S. Gioria, R. Kreder, I. Shulov, P. Villa, Y. Mely, M. Hibert, D. Bonnet, Chem. Commun. 2015, 51, 2960-2963.
[45] J. M. Gallas, M. Eisner, Photochem. Photobiol. 1987, 45, 595-600.
[46] A. Gómez-Hens, M. Aguilar-Caballos, TrAC, Trends Anal. Chem. 2004, 23, 127-136.
[47] K. Umezawa, A. Matsui, Y. Nakamura, D. Citterio, K. Suzuki, Chem. Eur. J. 2009, 15, 1096-1106.
[48] V. Lozan, P. Y. Solntsev, G. Leibeling, K. V. Domasevitch, B. Kersting, Eur. J. Inorg. Chem. 2007, 2007, 3217-3226.
[49] K. A. McCall, C. C. Huang, C. A. Fierke, J. Nutr. 2000, 130, 1437S-1446S.
[50] S. W. Thomas, G. D. Joly, T. M. Swager, Chem. Rev. 2007, 107, 1339-1386.
[51] A. Keppler, S. Gendreizig, T. Gronemeyer, H. Pick, H. Vogel, K. Johnsson, Nat. Biotechnol. 2003, 21, 86-89.
[52] A. Gautier, E. Nakata, G. Lukinavicius, K. T. Tan, K. Johnsson, J. Am. Chem. Soc. 2009, 131, 17954-17962.
[53] C. Chidley, H. Haruki, M. G. Pedersen, E. Muller, K. Johnsson, Nat. Chem. Biol. 2011, 7, 375-383.
[54] G. Lukinavičius, K. Umezawa, N. Olivier, A. Honigmann, G. Yang, T. Plass, V. Mueller, L. Reymond, I. R. Corrêa Jr, Z.-G. Luo, Nat. Chem. 2013, 5, 132-139.
[55] P.-M. Shih, T. K. Liu, K.-T. Tan, Chem. Commun. 2013, 49, 6212-6214.
[56] M. A. Brun, K. T. Tan, E. Nakata, M. J. Hinner, K. Johnsson, J. Am. Chem. Soc. 2009, 131, 5873-5884.
[57] T.-K. Liu, P.-Y. Hsieh, Y. D. Zhuang, C. Y. Hsia, C. L. Huang, H. P. Lai, H. S. Lin, I. C. Chen, H. Y. Hsu, K. T. Tan, ACS Chem. Biol. 2014, 9, 2359-2365.
[58] T. Komatsu, K. Johnsson, H. Okuno, H. Bito, T. Inoue, T. Nagano, Y. Urano, J. Am. Chem. Soc. 2011, 133, 6745-6751.
[59] X. Sun, A. Zhang, B. Baker, L. Sun, A. Howard, J. Buswell, D. Maurel, A. Masharina, K. Johnsson, C. J. Noren, ChemBioChem 2011, 12, 2217-2226.
[60] E. Prifti, L. Reymond, M. Umebayashi, R. Hovius, H. Riezman, K. Johnsson, ACS Chem. Biol. 2014, 9, 606-612.
[61] A. Keppler, S. Gendreizig, T. Gronemeyer, H. Pick, H. Vogel, K. Johnsson, Nat Biotech 2003, 21, 86-89.
[62] B. Pappin, M. J. Kiefel, T. A. Houston, Boron-Carbohydrate Interactions, INTECH Open Access Publisher, 2012.
[63] X. Wu, Z. Li, X. X. Chen, J. S. Fossey, T. D. James, Y. B. Jiang, Chem. Soc. Rev. 2013, 42, 8032-8048.
[64] C. T. Supuran, Nat. Rev. Drug Discov. 2008, 7, 168-181.
[65] J. Chiche, K. Ilc, J. Laferrière, E. Trottier, F. Dayan, N. M. Mazure, M. C. Brahimi-Horn, J. Pouysségur, Cancer Res. 2009, 69, 358-368.
[66] B. Bao, K. Groves, J. Zhang, E. Handy, P. Kennedy, G. Cuneo, C. T. Supuran, W. Yared, M. Rajopadhye, J. D. Peterson, PLOS ONE 2012.
[67] M. Kaluzová, S. Kaluz, M. I. Lerman, E. J. Stanbridge, Mol. Cell. Biol. 2004, 24, 5757-5766.
[68] M. Gerowska, L. Hall, J. Richardson, M. Shelbourne, T. Brown, Tetrahedron 2012, 68, 857-864.
[69] S. Aoki, N. Matsuo, K. Hanaya, Y. Yamada, Y. Kageyama, Biorg. Med. Chem. 2009, 17, 3405-3413.