簡易檢索 / 詳目顯示

研究生: 林慶晏
Lin, Ching-Yen
論文名稱: 含錫摻雜之銅金屬奈米線之成長及分析
Syntheses and Characterization of Tin-doped Copper Nanowires
指導教授: 游萃蓉
Yew, Tri-Rung
口試委員: 鄭晃忠
廖建能
游萃蓉
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 73
中文關鍵詞: 銅錫奈米線內連線化學氣相沉積電阻率奈米線
外文關鍵詞: copper-tin nanowires, interconnect, chemical vapor deposition, resistivity, nanowire
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用錫作為摻雜物與催化劑,於低溫(≦400 °C)下成長含錫摻雜之銅金屬奈米線,其低電阻及高電流密度的特性,可做為未來積體電路內連線之應用。並藉由調變基板錫膜厚度、試片前處理、反應溫度、反應壓力及前驅物比例等成長條件,來增加奈米線成長的密度。
    本研究成功利用銅粉與氯化亞錫粉末作為前驅物,以化學氣相沉積的方式,將前驅物沉積至基板而生成奈米線,並透過SEM、TEM等分析儀器確認奈米線之形貌、結晶性與其組成成分。此外,同時對前驅物反應後的產物作XRD分析,提出奈米線的成長機制,銅錫奈米線主要經由VLS成長機制生成。為使奈米線日後能應用於內連線結構內,本研究也嘗試將奈米線製備於內連線連接孔(via)內,並成功將奈米線於連接孔內成長。
    而在電性分析方面,含錫摻雜之銅金屬奈米線具有低電阻(3 μΩ-cm)及高承載電流密度(3.16×107 A/cm2),此電阻亦為目前所發表相關銅基奈米線文獻中最低電阻率,顯示錫摻雜之銅金屬奈米線極有潛力成為內連線應用之材料。


    This work presents the synthesis of tin-doped copper nanowires by introducing Sn not only as a catalyst to enhance the reduction of Cu but also as a dopant to grow the tin-doped copper NWs at low temperature (≦ 400 °C). It is believed that tin-doped copper NWs are good candidates for future CMOS interconnect applications because of their good electrical properties. In addition, this work is also focused on the optimization of the thickness of Sn, pretreatment of substrates, temperature, pressure, and the ratio of precursor compositions to obtain the high-density nanowires.
    The tin-doped copper nanowires (25 μm in length and 50–200 nm in diameter) have been successfully synthesized by chemical vapor deposition (CVD) using the Cu and SnCl2 powders as precursors. The morphology and crystalline structure of the tin-doped copper nanowires were characterized by scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HR-TEM), respectively. Additionally, the mechanism of Cu(Sn) nanowires formation is proposed to be vapor–liquid-solid (VLS) reaction growth. Finally, Cu(Sn) nanowires (NWs) were also synthesized in the via hole to confirm the ability for interconnect application.
    In electrical properties part, the tin-doped copper NWs exhibit low resistivity (3 μΩ-cm), which is the lowest value reported so far, and maximum current density (3.16×107 A/cm2). It indicates that tin-doped copper NWs exhibit great potential to be future interconnect materials.

    摘要 I Abstract II 誌謝 III 第一章 緒論 1 第二章 文獻回顧 3 2.1 奈米結構於半導體連線之應用 3 2.1-1 奈米碳管連線 (Carbon Nanotube Interconnect) 4 2.1-2 各種奈米線連線 4 2.2 奈米線的製備 6 2.2-1 氣-液-固機制( VLS機制) 6 2.2-2 氣-固機制( VS機制) 7 2.2-3 氧化物輔助成長(OAG機制) 7 2.3 錫摻雜銅金屬材料特性 9 2.4 錫摻雜銅金屬奈米線 10 第三章 實驗步驟與儀器簡介 12 3.1 實驗步驟 12 3.1-1 基座準備及清洗 12 3.1-2 化學氣相傳輸爐管系統 14 3.1-3 錫摻雜銅金屬奈米線的成長 15 3.1-4 電性量測 17 3.2 分析設備與方法 19 3.2-1 掃描式電子顯微鏡 (SEM) 19 3.2-2 X光能量分散光譜儀 (EDS) 21 3.2-3 穿透式電子顯微鏡 (TEM) 22 3.2-4 X光繞射分析儀 (XRD) 24 3.2-5 聚焦離子束電子顯微鏡 (FIB) 25 3.2-6 電性量測儀器 27 第四章 結果與討論 28 4.1 未置前驅物之錫摻雜銅金屬奈米線成長 28 4.1-1 基座前處理的影響 28 4.1-1-1 經蝕刻前處理的影響 28 4.1-1-2 未經蝕刻前處理的影響 30 4.1-2 錫膜厚度的影響 32 4.1-3 反應溫度的影響 35 4.2 含前驅物之錫摻雜銅金屬奈米線成長 37 4.2-1 錫膜厚度的影響 37 4.2-2 製程壓力的影響 38 4.2-3 前驅物成份比例的影響 41 4.2-4 製程溫度的影響 43 4.3 奈米線結構及成份分析 44 4.4 錫摻雜銅金屬奈米線的成長機制 47 4.5 錫摻雜銅金屬奈米線於連接孔(via hole)內的成長 53 4.5-1 製程壓力的影響 55 4.5-2 蝕刻時間的影響 57 4.6錫摻雜銅金屬奈米線電性量測 59 4.6-1 單根奈米線電阻率量測 59 4.6-2 單根奈米線最大電流密度測試 64 第五章 結論 66 第六章 未來展望 68 參考文獻 70 本研究相關之發表 73

    [1] H. Cho, K.H. Koo, P. Kapur, and K. C. Saraswat, IITC,135 (2007)
    [2] D. A. B. Miller, Proc. IEEE 88, 728-749 (2000)
    [3] A. Scandurra, IEEE, Ieee International Symposium on Circuits and Systems, IEEE, 3597-3600 (2010)
    [4] M. Sato, S. Ogawa, T. Kaga, H. Sumi, E. Ikenaga, Y. Takakuwa, M. Nihei, N.Yokoyama, IITC, 11.2 (2010)
    [5] M. Horibe, M. Nihei, D. Kondo, A. Kawabata, Y. Awano, Jpn. J. Appl. Phys. 44, 5309-5312 (2005)
    [6] M. Nihei, A. Kawabata, D. Kondo, M. Horibe, S. Sato, Y. Awano, Jpn. J. Appl. Phys. 44, 1626-1628 (2005)
    [7] A. P. Graham, G. S. Duesberg, R. Seidel, M. Liebau, E. Unger, F. Kreupl, W. Hönlein, Diamond and Related Materials 13, 1296-1300 (2004)
    [8] Q. Ngo, T. Yamada, M. Suzuki, Y. Ominami, A. M. Cassell, J. Li, M. Meyyappan, C. Y. Yang, IEEE Trans. Nanotechnol. 6, 688-695 (2007)
    [9] Y. P. Song, A. L. Schmitt, S. Jin, Nano Lett. 7, 965-969 (2007)
    [10] L. J. Chen, J. Mater. Chem. 17, 4639-4643 (2007)
    [11] L. J. Chen, JOM. 57, 24-30 (2005)
    [12] C. Y. Lee, M. P. Lu, K. F. Liao, W. F. Lee, C. T. Huang, S. Y. Chen, L.J. Chen, J. Phys. Chem. C 113, 2286-2289 (2009)
    [13] Q. J. Huang, C. M. Lilley, M. Bode, R. Divan, Journal of Applied Physics 104, 023709 (2008)
    [14] S. Fujisawa, T. Kikkawa, T. Kizuka, Jpn. J. Appl. Phys. 42, 1433-1435 (2003)
    [15] H. T. Tung, J. M. Song, T. Y. Dong, W. S. Hwang, I. G. Chen, Crystal Growth & Design 8, 3415-3419 (2008)
    [16] J. Robertson, G. Zhong, S. Hofmann, B. C. Bayer, C. S. Esconjauregui, H. Telg, C. Thomsen, Diamond and Related Materials 18, 957-962 (2009)
    [17] D. Yokoyama, T. Iwasaki, K. Ishimaru, S. Sato, T. Hyakushima, M. Nihei, Y. Awano, H. Kawarada, Jpn. J. Appl. Phys. 47, 1985-1990 (2008)
    [18] M. Katagiri, N. Sakuma, M. Suzuki, T. Sakai, S. Sato, T. Hyakushima, M. Nihei, Y. Awano, Jpn. J. Appl. Phys. 47, 2024-2027 (2008)
    [19] A. Kawabata, S. Sato, T. Nozue, T. Hyakushima, M. Norimatsu, M. Mishima, T. Murakami, D. Kondo, K. Asano, H. Kawarada, T. Sakai, M. Niheil, Y. Awano, IEEE:NewYork, 237-239 (2008)
    [20] P. Yang, Y. Wu, and R. Fan, Int. J. Nanoscience, 1, 1-39 (2002)
    [21] R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89-90 (1964)
    [22] A. M. Morales, C. M. Lieber, Science 279, 208-211 (1998)
    [23] P.Yang, C. M. Lieber, J. Matter. Res. 12, 2981-2996 (1997)
    [24] P.Yang, C. M. Lieber, Science 273, 1836-1840 (1996)
    [25] S. T. Lee, N. Wang, Y. F. Zhang, Y. H. Tang, MRS Bulletin 24, 36-42 (1999)
    [26] S. T. Lee, N. Wang, C.S. Lee, Mater. Sci. Eng. A286, 16-23 ( 2000)
    [27] K. L. Lee, C. K. Hu, K. N. Tu, Journal of Applied Physics 78, 4428-4437 (1995)
    [28] International Technology Roadmap for Semiconductors (ITRS) 2007 edition Interconnect (2010)
    [29] K. Barmak, A. Gungor, C. Cabral, J. M. E. Harper, J. Appl. Phys. 94, 1605-1616 (2003)
    [30] M. P. Pileni, T. Guilk, J. Tanori, A. Filankembo, F. C. Dedieu, Langmuir 22, 7359-7363 (1998)
    [31] M. E. T. Molares, V. Buschmann, D. Dobrev, R. Neumann, R. Scholz, I. U. Schuchert, and J. Vetter, Adv. Matter. 13, 62-65 (2001)
    [32] T. Gao, G. Meng, Y. Wang, S. Sun, L. Zhang, J. Phys., Condens. Matter. 14, 355-363 (2002)
    [33] Y. Chang, M. L. Lye, H. C. Zeng, Langmuir 21, 3746-3748 (2005)
    [34] C. Kim, W. H. Gu, M. Briceno, I. M. Robertson, H. Choi, and K. Kim, Adv. Mater. 20, 1859-1863 (2008)
    [35] J. H. Wang, T. H. Yang, W. W. Wu, L. J. Chen, C. H. Chen, C. J. Chu, Nanotechnology 17, 719-722 (2006)
    [36] Z. W. Liu, Y. Bando, Adv. Mater. 15, 303-305 (2003)
    [37] N. Saunders, A. Miodownik, J. Phase Equilibria 11, 278-287 (1990)
    [38] C. Lampeonnerud, A. Harsta, U. Jansson, J. Phys. IV. 1, 881-888 (1991)
    [39] G. Schindler, G. Steinlesberger, M. Engelhardt, W. Steinhogl, Solid-State Electron. 47, 1233-1237 (2003)
    [40] J. F. Lin, J. P. Bird, L. Rotkina, P. A. Bennett, Appl. Phys. Lett. 82, 802-804 (2003)
    [41] M. E. Toimil-Molares, E. M. Hohberger, C. Schaeflein, R. H. Blick, R. Neumann, C. Trautmann, Appl. Phys. Lett. 82, 2139-2141 (2003)
    [42] A. P. Suryavanshi, M. F. Yu, Appl. Phys. Lett. 88, 083103-3 (2006)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE