研究生: |
陳浩霖 Chen, Hao-Lin. |
---|---|
論文名稱: |
聚芳香族紫質的表面合成研究 On-Surface Synthesis Study of a polyaromatic Porphyrin |
指導教授: |
霍夫曼
Hoffmann, Germar |
口試委員: |
羅榮立
Lo, Rong-Li 徐斌睿 Hsu, Pin-Jui |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 54 |
中文關鍵詞: | 紫質 、合成 、表面 、聚芳香族 、分子 |
外文關鍵詞: | Porphyrin, Synthesis, Surface, Polyaromatic, Molecule |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
縮小微芯片器件(如傳統半導體)的技術正在接近其極限,並且在原子尺度上的精確設計具有挑戰性。精確石墨烯奈米帶的製造提供了一種新方法可根據特定應用的需要調整電子特性。自下而上的方法涉及通過表面催化劑的有機合成,例如前體設計和預合成的聚合物鏈形成,提供了生產原子尺度下精確石墨烯奈米帶的有希望的方法。因此,創建合適的分子構建模塊並了解分子間自組裝和偶聯反應位點的特性是重要的問題。
\hspace*{4mm}在這裡,我們提出了一種新合成的分子,PAL025擁有一個鋅紫質核心,兩個蒽接在旁邊,兩端都含有溴。我們將其沉積在室溫Au(111)和表面退火分子的結果,以引起受空間位阻和解離能位影響的耦合反應。
The technology to down-scale microchip devices such as traditional semiconductor is approaching its limits and the precise design at the atomic scale challenging. Fabrication of precise graphene nanoribbon (GNR) provides a new way of tuning electronic properties to the need of specific applications. Bottom-up approach which involves organic synthesis through surface catalyst such as precursor design and pre-synthesized polymer chain formation provides a promising process of producing atomically precise GNR. Therefore, creating suitable molecular building blocks and understanding the properties of self-assembling and coupling reaction sites in-between molecules are important issues.
Here we present a newly synthesized molecule, PAL025 possessing a Zn-Porphyrin core with two arms of anthracene and terminated with bromine at both ends. We deposited it onto room temperature Au(111) and result of annealing molecule on surface to induce coupling reaction influenced by steric hindrance and dissociation energy barrier.
[1] J. Bardeen, "Tunnelling from a Many-Particle Point of View", Phys. Rev. Lett., 6, 57(1961)
[2] J. Tersoff and D.R.Hamann, "Theory and Application for the Scanning Tunneling Microscope", Phys. Rev. Lett., 50, 1998(1983)
[3] S.H. Pan, "Piezoelectric motor", Internation patent publication, WO 93/19494(1992)
[4] I. Langmuir, "Thoriated tungsten filaments", Journal of The Franklin Institute, 271, 543(1934)
[5] F. Ullmann and J. Bielecki, "Ueber Synthesen in der Biphenylreihe", J. Chem. Ber., 34, 2174(1901)
[6] S. Mondal, "Recent advancement of Ullmann-type coupling reactions in the formation of C–C bond", ChemTexts, 2:17(2016)
[7] C.W. Chou, "Topological insulator preparation and molecule investigation with scanning tunneling microscopy", Master's thesis, National Tsing Hua University(2018)
[8] J. Cai et al., "Atomically precise bottom-up fabrication of graphene nanoribbons", Nature, 466, 471(2010)
[9] Y.C. Chen et al., "Tuning the Band Gap of Graphene Nanoribbons Synthesized from Molecular Precursors", ACS Nano, 7, 6123(2013)
[10] P.B. Bennett et al., "Bottom-up graphene nanoribbon field-effect transistors", Appl. Phys. Lett., 103, 253114(2013)
[11] P. Han et al., "Bottom-Up Graphene-Nanoribbon Fabrication Reveals Chiral Edges and Enantioselectivity", ACS Nano, 8, 9181(2014)
[12] J. Cai et al., "Graphene nanoribbon heterojunctions", Nature Nanotechnology, 9, 896(2014)
[13] X. Li et al., "Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors", Science, 319, 1230(2008)
[14] H. Zhang et al., "On-Surface Synthesis of Rylene-Type Graphene Nanoribbons", J. Am. Chem. Soc., 137, 4022(2015)
[15] Y.C. Chen et al., "Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions", Nature Nanotechnology, 10, 156(2015)
[16] P. Ruffieux et al., "Electronic Structure of Atomically Precise Graphene Nanoribbons", ACS Nano, 6, 6930(2012)
[17] X. Wang et al., "Room-Temperature All-Semiconducting Sub-10-nm Graphene Nanoribbon Field-Effect Transistors", Phys. Rev. Lett., 100, 206803(2008)
[18] R.R. Cloke et al., "Site-Specific Substitutional Boron Doping of Semiconducting Armchair Graphene Nanoribbons", J. Am. Chem. Soc., 137, 8872(2015)
[19] M. Sicot et al., "Polymorphism of Two-Dimensional Halogen Bonded Supramolecular Networks on a Graphene/Iridium(111) Surface", J. Phys. Chem. C, 121, 2201(2017)
[20] C.M. Doyle et al., "Surface Mediated Synthesis of 2D Covalent Organic Networks: 1,3,5-Tris(4-bromophenyl)benzene on Au(111)", Phys. Status Solidi B, 256, 1800349(2019)
[21] J.C. Russell et al., "Dimerization of Tri(4-bromophenyl)benzene by Aryl-Aryl Coupling from Solution on a Gold Surface", J. Am. Chem. Soc., 133, 4220(2011)
[22] R. Gutzler et al., "Surface mediated synthesis of 2D covalent organic frameworks:1,3,5-tris(4-bromophenyl)benzene on graphite(001), Cu(111), and Ag(110)", Chem. Commun., 4456(2009)
[23] M.O. Blunt et al., "Templating molecular adsorption using a covalent organic frameworkw", Chem. Commun., 46, 7157(2010)
[24] J. Hassan et al., "Aryl-Aryl Bond Formation One Century after the Discovery of the Ullmann Reaction", Chem. Rev., 102, 1359(2002)
[25] Q. Fan, J.M. Gottfried, and J. Zhu, "Surface-Catalyzed C−C Covalent Coupling Strategies toward the Synthesis of Low-Dimensional Carbon-Based Nanostructures", Acc. Chem. Res., 48, 2484(2015)
[26] T. Sekiguchi et al., "Adsorption-induced conformational changes of porphyrin derivatives and formation of twin superstructures on a copper surface", Thin Solid Films, 464-465, 393(2004)
[27] W. Auwärter et al., "Porphyrins at interfaces", Nature Chemistry, 7, 105(2015)
[28] J. Li et al., "Survival of spin state in magnetic porphyrins contacted by graphene nanoribbons", Sci. Adv., 4, eaaq0582(2018)
[29] F.J. Williams et al., "First observation of capping/uncapping by a ligand of a Zn porphyrin adsorbed on Ag(100)", Chem. Commun., 1688(2004)
[30] T. Tanaka and A. Osuka, "Conjugated porphyrin arrays: synthesis, properties and applications for functional materials", Chem. Soc. Rev., 44, 943(2015)
[31] A.K. Geim and K.S. Novoselov, "The rise of graphene", Nature Materials, 6, 183(2007)
[32] T. Kuilla et al., "Recent advances in graphene based polymer composites", Progress in Polymer Science, 35, 1350(2010)
[33] A. H. Castro Neto et al., "The electronic properties of graphene", Rev. Mod. Phys., 81, 109(2009)
[34] Y. Zhang et al., "Direct observation of a widely tunable bandgap in bilayer graphene", Nature, 459, 820(2009)
[35] D. Wong et al., "Spatially resolving density-dependent screening around a single charged atom in graphene", Physical Review B, 95, 205419(2017)
[36] L. Ju et al., "Photoinduced doping in heterostructures of graphene and boron nitride", Nature Nanotechnology, 9, 348(2014)
[37] M. Koch et al., "Voltage-dependent conductance of a single graphene nanoribbon", Nature Nanotechnology, 7, 713(2012)
[38] L. Guo and D. Cao, "Color tunable porous organic polymer luminescent probes for selective sensing of metal ions and nitroaromatic explosives", J. Mater. Chem. C, 3, 8490(2015)
[39] M.G. Goesten et al., "Sulfonated Porous Aromatic Frameworks as Solid Acid Catalysts", ChemCatChem, 8, 961(2016)
[40] T. Islamoglu et al., "Systematic Postsyntheic Modification of Nanoporous Organic Frameworks for Enhanced CO$_{2}$ Capture frome Flue Gas and Landfill Gas", J. Phys. Chem. C, 120, 2592(2016)
[41] H. Ren et al., "Synthesis of a porous aromatic framework for adsorbing organic pollutants application", J. Mater. Chem., 21, 10348(2011)
[42] S.R. Snyder and H.S. White, "Electrochemistry and Structure of Thin Films of (Protoporphyrinato(IX))iron(III) Chloride", J. Phys. Chem., 99, 5626(1995)
[43] H. Fukushima and D.M. Taylor, "Synthesis and Monolayer Behavior of a Tetrabiotinylated Porphyrin Ligand", Langmuir, 11, 3523(1995)
[44] K. Ogaki et al., "In Situ Scanning Tunneling Microscopy of Ordering Processes of Adsorbed Porphyrin on Iodine-Modified Ag(111)", J. Phys. Chem., 100, 7185(1996)
[45] N.J. Tao et al., "In Situ STM and AFM Study of Protoporphyrin and Iron(III) and Zinc(II) Protoporphyrins Adsorbed on Graphite in Aqueous Solutions", Langmuir, 11, 4445(1995)
[46] M. Kunitake et al., "Self-organized Porphyrin Array on Iodine-Modified Au(111) in Electrolyte Solutions: In Situ Scanning Tunneling Microscopy Study ", Langmuir, 11, 2337(1995)
[47] K.S. Suslick et al., "Microporous Porphyrin Solids", Acc. Chem. Res., 38, 283(2005)
[48] E. Deiters et al., "Reversible single-crystal-to-single-crystal guest exchange in a 3-D coordination network based on a zinc porphyrin", Chem. Commun., 3906(2005)
[49] J.L. Sessler and D. Seidel, "Synthetic Expanded Porphyrin Chemistry", Angew. Chem. Int. Ed., 42, 5134(2003)
[50] M. Salvalaglio et al., "1,3,5-Tris(4-bromophenyl)benzene prenucleation clusters from metadynamics", Acta Cryst., C70, 132(2014)
[51] L.L. Li and E.W.G. Diau, "Porphyrin-sensitized solar cells", Chem. Soc. Rev., 42, 291(2013)
[52] M.R. Wasielewski, "Photoinduced Electron Transfer in Supramolecular Systems for Artificial Photosynthesis", Chem. Rev., 92, 435(1992)
[53] E.D. Sternberg and D. Dolphin, "Porphyrin-based Photosensitizers for Use in Photodynamic Therapy", Tetrahedron, 54, 4151(1998)
[54] S. Pagola et al., "The structure of malaria pigment b-haematin", Nature, 404, 307(2000)
[55] E. Tsuchida et al., "Artificial Oxygen Carriers, Hemoglobin Vesicles and Albumin-Hemes, Based on Bioconjugate Chemistry", Bioconjugate Chem., 20, 1419(2009)
[56] J.M. Orts et al., "Nature of Br Adlayers on Pt(111) Single-Crystal Surfaces. Voltammetric, Charge Displacement, and ex Situ STM Experiments", J. Phys. Chem., 100, 2334(1996)
[57] A.M. Bittner et al., "Bromine adsorption on Pt(lll), (100), and (110)- an STM study in air and in electrolyte", Surface Science, 335, 291(1995)
[58] S. Tanaka et al., "In-situ scanning tunneling microscopy of bromine adlayers on Pt(111)", Journal of Electroanalytical Chemistry, 396, 125(1995)
[59] O. Endo et al., "In-situ XAFS studies of Br adsorption on the silver(111) electrode", Journal of Electroanalytical Chemistry, 494, 121(2000)
[60] B. Fiedler et al., "Ordered structures of two sulfur containing donor molecules on the Au(111) surface", Surface Science, 606, 1855(2012)
[61] H. Weingarten, "Mechanism of the Ullmann Condensation", J. Org. Chem., 12, 3624(1964)
[62] H.L. Aalten et al., "The copper catalysed reaction of sodium methoxide with aryl bromides. A mechanistic study leading to a facile synthesis of anisole derivatives", Tetrahedron, 45, 5565(1989)
[63] C. Sambiagio et al., "Copper catalysed Ullmann type chemistry: from mechanistic aspects to modern development", Chem. Soc. Rev., 43, 3525(2014)
[64] J.F. Bunnett and J.K. Kim, "Evidence for a Radical Mechanism of Aromatic “Nucleophilic” Substitution1", J. Am. Chem. Soc., 92, 25, 7463(1970)
[65] C.L. Jenkins and J.K. Kochi, "Homolytic and ionic mechanisms in the ligand-transfer oxidation of alkyl radicals by copper(II) halides and pseudohalides", J. Am. Chem. Soc., 94, 3, 856(1972)
[66] J.V. Barth et al., "Scanning tunneling microscopy observations on the reconstructed Au(111) surface:Atomic structure, long-range superstructure, rotational domains, and surface defects", Phys. Rev. B, 42, 9307(1990)
[67] C.L. Jenkins and J.K. Kochi, "Au(111): A theoretical study of the surface reconstruction and the surface electronic structure", Phys. Rev. B, 43, 13899(1991)
[68] C.L. Jenkins and J.K. Kochi, "Observation of two-dimensional Fermi contour of a reconstructed Au(111) surface using Fourier transform scanning tunneling microscopy", Surface Science, 423, 160(1999)
[69] M. Lackinger, "Surface-assisted Ullmann coupling", Chem. Commun., 53, (7872)2017