研究生: |
陳柏元 Po-Yuan Chen |
---|---|
論文名稱: |
針對週期性即時工作的公平品質率排程演算法 A Fair Quality-Ratio Scheduling Algorithm for Periodic Real-Time Tasks |
指導教授: |
黃泰一
Tai-Yi Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2004 |
畢業學年度: | 92 |
論文頁數: | 31 |
中文關鍵詞: | 即時系統 、回饋機制排程演算法 、平衡回饋系統 、週期性即時排程演算法 |
外文關鍵詞: | real-time systems, reward-based scheduling, balanced-reward systems, periodic real-time scheduling |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於即時系統(Real-Time System)中,回饋機制排程法提供了一個較具彈性的模型,回饋機制排程法與許多現實上的應用程式相似,如多媒體應用程式及反覆定義型的演算法。回饋機制工作由兩個部分組成,分別是主要部分工作(Mandatory Part)和次要部分工作(Optional Part),次要部分工作必需要在主要部分工作完成後,才能開始執行。而每一個次要部分工作都伴隨了一個回饋函式,回饋函式定義了當次要部分工作執行了某段時間後,它所能得到的回饋值,在多數的研究中,回饋函式常為凹面型(cancave)回饋函式或直線型(linear)回饋函式。此兩種函式被認為是最接近於實際應用程式的函式,因此,論文中的回饋函式,也以此兩種函式為依歸。傳統上的回饋機制排程演算法專注於如何使系統整體的回饋值達到最大值。也因為如此,這些回饋機制排程演算法常常造成系統工作所收到的回饋值不平衡。有些工作可能會得到極高的回饋值,而有些工作可能會得到極低的回饋值。在這篇論文中,我們將提出一個最佳化的回饋平衡演算法,使每個工作能得到相同的回饋品質率。首先,我們將討論當回饋函式是可逆且漸增的時候,我們將利用數學的方式解決。接下來,我們對於一般函式或不可逆函式發展另一套演算法。最後,我們將利用實驗以證明我們的排程演算法是有效率並且有好的效用。實驗結果證明,我們的確發展出一套有效率並且有效用的演算法。
Reward-based scheduling provides graceful degradation for real-time systems such as multimedia applications and iterative-refinement numerical algorithms. A reward-based task is composed of a mandatory part and an optional part which only executes after completion of the mandatory part. Traditional reward-based scheduling algorithms address on maximizing the total reward in a system. Such an algorithm may result in an unbalanced system where some tasks receive results of superior quality while other tasks only receive minimal acceptable results. In this paper, we present an optimal balanced-reward algorithm such that each task receives the same quality ratio. We first discuss the case where each reward function is strictly increasing and invertible. A mathematical approach is presented to determine the optimal quality ratio. We next develop an efficient generic solution for general cases where some reward functions are not invertible. We conducted experiments to compare our algorithm with a set of other reward-based algorithms to demonstrate its effectiveness. The experimental results show that our algorithm effectively and efficiently develops an optimal balanced-reward schedule.
[1] H. Aydin, R. Melhem, D. Mossé, and P. Mejía-Alvarez. Optimal Reward-Based Scheduling for Periodic Real-Time Tasks. IEEE Transactions on Computers, February 2001.
[2] C.-Y. Chong and S. P. Kumar. Sensor Networks: Evolution, Opportunities, and Challenges. In Proceedings of the IEEE, pages 1247-1256, August 2003.
[3] J.-Y. Chung, J. W.-S. Liu, and K.-J. Lin. Scheduling Periodic Jobs That Allow Imprecise Results. IEEE Transactions on Computers, 39(9):1156-1174, September 1990.
[4] J. K. Dey, J. Kurose, and D. Towsley. On-Line Scheduling Policies for a Class of IRIS (Increasing Reward with Increasing Service ) Real-Time Tasks. IEEE Transactions on Computers, 45(7):802-813, July 1996.
[5] J. K. Dey, J. f. Kurose, D. Towsley, C. Krishna, and M. Girkar. Efficient On-Line Processor Scheduling for a Class of IRIS (Increasing Reward with Increasing Service ) Real-Time Tasks. In Proceedings of the ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, pages 217-228, May 1993.
[6] H. Ghafir and H. Chadwick. Multimedia Servers – Design and Performance. In IEEE Global Telecommunications Conference, volume 2, pages 886-890, November-December 1994.
[7] R. Iyer and L. Kleinrock. QoS Control For Sensor Networks. In IEEE International Conference on Communications, Pages 517-521, May 2003.
[8] R. E. Korf. Real-Time Heuristic Search. Artificial Intelligence, 42(2-3):189-211, March 1990.
[9] C. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming in Hard Real-Time Environment. Journal of ACM, 20(1):46-61, January 1973.
[10] J. W.-S. Liu, K.-J. Lin, W.-K. Shih, A. C. shi Yu, J.-Y. Chung and W. Zhao. Algorithms of Scheduling Imprecise Computations. Computer, 24(5):58-68, May 1991.
[11] P. Mejía-Alvarez, R. Melhem, D. Mossé, and H. Aydin. An Incremental Server for Scheduling Overloaded Real-Time Systems. IEEE Transactions on Computers, 52(10): 1347-1361, October 2003.
[12] A. K. Mok. Fundamental Design Problems of Distributed Systems for the Hard Real-Time Environment. PhD thesis, Massachusetts Institute of Technology, 1983.
[13] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. Aresource Allocation Model for QoS Management. In IEEE Real-Time Systems Symposium, pages 298-307, December 1997.
[14] C. Rusu, R. Melhem, and D. Mossé. Maximizing Rewards for Real-Time Applications with Energy Constraints. ACM Transactions on Embedded Computing Systems, 2(4):537-559, November 2003.
[15] T. Sato. The Method for Multimedia Information Transfer System. In IEEE Midnight-Sun Workshop on Soft Computing Methods in Industrial Applications, pages 40-45, June 1999.
[16] W.-K. Shin, J. W.-S. Liu, and J.-Y. Chung. Algorithms for Scheduling Imprecise Computations with Timing Constraints. SIAM J. Computing, 20(3):537-552, July 1991.
[17] M. Zu and A. M. K. Chen. Real-Time Scheduling of Hierarchical Reward-Based Tasks. In IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS ‘03), pages 2-9, May 2003.