簡易檢索 / 詳目顯示

研究生: 何季展
Ho, Ji.Jan
論文名稱: 具多氮型氮化矽/氧化矽堆疊的穿隧氧化層與奈米線通道之複晶矽快閃記憶體元件特性分析
Characteristics of Poly-Si Flash Memory with Nanowire Channel and N-rich SiN/SiO2 Tunneling Layer Stack
指導教授: 張廖貴術
Chang-Liao, K.S.
口試委員: 趙天生
Chao, Tien-Sheng
蔡銘進
Tsai, Ming-Jinn
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 95
中文關鍵詞: 矽-氧-氮-氧-矽奈米線通道堆疊式穿隧層快閃記憶體多氮型氮化矽
外文關鍵詞: SONOS, nanowire, stacked tunneling layer, flash memory, N-rich SiN
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   如今,快閃記憶體已廣泛地應用於可攜式電子產品上,如智慧型手機與平板電腦。傳統浮動式閘極快閃記憶體因為其結構與可靠度問題,使得元件已無法滿足微縮發展的趨勢,因此利用電荷陷阱式快閃記憶體取代浮動閘極結構元件已是未來發展的趨勢。然而當傳統SONOS記憶體元件發展到次微米以下,就無法再以降低穿隧氧化層厚度來提升元件的操作效率。所以有許多改良的SONOS元件也因此而發展出來,例如能帶工程SONOS元件。利用非常薄的薄膜堆疊的穿隧氧化層,在寫入與抹除時的高電場下,電荷穿隧距離會因部分穿隧能障消失而有效降低。
      在本篇論文中,我們利用此概念因而設計了(低溫)多氮型氮化矽/氧化矽堆疊的穿隧氧化層作為SONOS元件的穿隧氧化層。此外,由於奈米線通道結構能提高閘極對通道的控制能力,並能有效地降低臨界電壓(threshold voltage)、漏電流等,且基本電性都較一般標準結構的薄膜電晶體好,所以我們也進一步結合了利用側壁空間層的製作方式所形成的奈米線通道薄膜電晶體。由於奈米線通道結構的SONOS元件,在元件操作時有明顯的EBT(Electron back tunneling)現象發生,所以我們也把高介電係數材料以及高功函數金屬應用在電荷阻擋層與閘極上,並且對基本電特性、寫入/抹除速度、可靠度做詳細的分析探討。
      由實驗結果發現,(低溫)多氮型氮化矽/氧化矽堆疊的穿隧氧化層能有效的提升寫抹速度,但在資料保存性上較差。使用奈米線通道結構的SONOS元件,由於奈米線通道有較小的曲率半徑,使得有較快的寫入與抹除速度。多氮型氮化矽/氧化矽堆疊的穿隧氧化層也能有效的提升寫抹除速度,但在抹除時卻有很明顯的EBT現象發生。資料保存性上也較差些。搭配高介電材料的阻擋層與高功函數金屬閘極的奈米線通道的元件,元件操作時已經沒有EBT發生,而且多氮型氮化矽/氧化矽堆疊的穿隧氧化層也能有效的提升寫入與抹除速度,資料保存性上仍較差些。但在經過一千次擦寫後的電荷保持力卻以堆疊式的穿隧氧化層較好。


    摘要 I 目錄 III 表目錄 VII 圖目錄 VIII 第一章 序論 1 1.1 前言 1 1.2 快閃記憶體面臨問題 1 1.3 電荷陷阱式快閃記憶體的結構及其優缺點 2 (A) 浮動閘極快閃記憶體之介紹 2 (B)電荷陷阱式快閃記憶體之介紹 3 (C)浮動閘極式快閃記憶體與電荷陷阱式快閃記憶體之比較 4 1.4 研究文獻與目的 5 1-5實驗規劃 7 1.6 各章摘要 7 第二章 快閃記憶體元件操作方法 12 2.1 寫入與抹除方法 12 2.1.1 CHEI通道熱電子注入寫入 12 2.1.2 F-N 穿隧寫入 13 2.1.3F-N 穿隧擦拭 13 2.2 耐久力 14 2.3電荷保持力 15 2.4干擾 16 第三章 低溫多氮型氮化矽在堆疊式電荷穿隧層結構對電荷陷阱式快閃記憶體元件特性研究 25 3.1研究背景與目的 26 3.2實驗製程與規劃 27 3.2.1 前段製程 27 3.2.2成長穿隧氧化層 28 3.2.3沉積電荷儲存層以及阻擋層 29 3.2.4 成長穿隧氧化層 29 3.3實驗結果與討論 30 3.3.1標準型氮化矽作電荷儲存層之探討 31 (A)各種穿隧層元件的FN 寫入速度及FN 抹除速度比較 31 (B)各種穿隧層的資料保存性在室溫下之比較 31 3.3.2多矽型氮化矽作電荷儲存層之探討 32 (A)各種穿隧層的FN 寫入速度及FN 抹除速度比較 32 (B)各種穿隧層的資料保存性在室溫下之比較 33 3.4結論 33 第四章 多氮型氮化矽在堆疊式電荷穿隧層結構結合多晶矽奈米線通道薄膜電晶體之電荷陷阱式快閃記憶體元件特性研究 52 4.1 研究背景與目的 52 4.2實驗製程與規劃 53 4.2.1前段製程 53 4.2.2成長穿隧氧化層 54 4.2.3沉積電荷儲存層、阻擋層以及多晶矽閘極 55 4.2.4後段製程 55 4.2.5 Transmission electron microscopy(TEM) 55 4.3 實驗結果與討論 56 4.3.1 各種穿隧氧化層的寫抹特性與可靠度分析 56 (A)各種穿隧層的FN 寫入速度與FN抹除速度比較 56 (B)各種穿隧層元件的資料保存性在室溫下之比較 57 (C)各種穿隧層元件的多次寫抹在室溫下之比較 58 4.4 結論 58 第五章 多氮型氮化矽在堆疊式電荷穿隧層結構結合多晶矽奈米線通道薄膜電晶體之TANOS 電荷陷阱式快閃記憶體元件特性研究 71 5.1 研究背景與目的 72 5.2實驗製程與規劃 72 5.2.1 以平面薄膜電晶體為結構的TANOS 記憶體元件,做單層與堆疊 式穿隧氧化層元件的製作流程 73 5.2.1.1 前段製程 73 5.2.1.2 成長穿隧氧化層 73 5.2.1.3 沉積電荷儲存層、高介電係數材料阻擋層以及高功函數閘極 74 5.2.1.4 後段製程 74 5.2.2 奈米線通道薄膜電晶體結構 75 5.3 實驗結果與討論 75 (A)平面與奈米線通道結構,各種穿隧層的FN 寫入速度與FN抹 除速度比較 75 (B)各種穿隧層元件的資料保存性在室溫下之比較 76 (C)各種穿隧層元件的多次寫抹在室溫下之比較 76 5.4 結論 77 第六章 結論與建議 85 6.1 結論 85 6.2 未來研究方向 86 參考資料 87

    Chapter 1
    [1.1] Min She, “Semiconductor Flash Memory Scaling”, 2003.
    [1.2] M. White, D. Adams, and J. Bu, “On the go with SONOS,” IEEE Circuits and Devices Magazine,, vol. 16, no. 4, Jul 2000, pp. 22 –31.
    [1.3] M. White, Y. Yang, A. Purwar, and M. French, “A low voltage SONOS nonvolatile semiconductor memory technology,” in Nonvolatile Memory Technology Conference, 1996., Sixth Biennial IEEE International, Jun 1996, pp. 52 –57.
    [1.4] J. Bu and M. White, “Retention reliability enhanced SONOS NVSM with scaled programming voltage,” in Aerospace Conference Proceedings, 2002. IEEE, vol. 5, 2002, pp. 5–2383 – 5–2390 vol.5.
    [1.5] K. San, C. Kaya, and T. Ma, “Effects of erase source bias on flash EPROM device reliability,” Electron Devices, IEEE Transactions on, vol. 42, no. 1, pp. 150 –159, Jan 1995.
    [1.6] K. Kahng and S. Sze, “A floating gate and its application to memory devices,” Electron Devices, IEEE Transactions on, vol. 14, no. 9, p. 629, Sep 1967.
    [1.7] A. Wang and W. D. Woo, “Static magnetic storage and delay line,” Journal of Applied Physics, vol. 21, no. 1, pp. 49 –54, Jan 1950.
    [1.8] S. M. Sze and K. K. Ng, physics of semiconductor Devices, 3rdEd., Wiley Interscience, Hoboken, N.J. 2007
    [1.9] T. Y. Tseng and S. M. Sze, Eds, nonvolatile Memories Materials, Devices, and Applications, American Scientific Publishers, Stevenson Ranch, CA, 2012
    [1.10] T. Sugizaki, M. Kobayashi, M. Ishidao, H. Minakata, M. Yamaguchi, Y. Tamura, Y. Sugiyama, T. Nakanishi, and H. Tanaka, “Novel multi-bit SNOS type flash memory using a high-k charge trapping layer,” in VLSI Technology, 2003. Digest of Technical Papers. 2003 Symposium on, June 2003, pp. 27 – 28.
    [1.11] Y.-N. Tan, W.-K. Chim, B. J. Cho, and W.-K. Choi, “Over-erase phenomenon in SONOS-type flash memory and its minimization using a hafnium oxide charge storage layer,” Electron Devices, IEEE Transactions on, vol. 51, no. 7, pp. 1143 – 1147, July 2004.
    [1.12] Y. N. Tan, W. Chim, W. K. Choi, M. S. Joo, and B. J. Cho, “Hafnium aluminum oxide as charge storage and blocking-oxide layers in SONOS-type nonvolatile memory for high-speed operation,” Electron Devices, IEEE Transactions on, vol. 53, no. 4, pp. 654 – 662, April 2006.
    [1.13] C.-C. Wang, K.-S. Chang-Liao, C.-Y. Lu, and T.-K. Wang, “Enhanced band-to-band-tunneling-induced hot-electron injection in p-channel flash by band-gap offset modification,” Electron Device Letters, IEEE, vol. 27, no. 9, pp. 749 –751, Sept. 2006.
    [1.14] H.-T. Lue, S.-C. Lai, T.-H. Hsu, Y.-H. Hsiao, P.-Y. Du, S.-Y. Wang, K.-Y. Hsieh, R. Liu, and C.-Y. Lu, “A critical review of charge-trapping nand flash devices,” in Solid-State and Integrated-Circuit Technology, 2008. ICSICT 2008. 9th International Conference on, oct. 2008, pp. 807 –810.
    [1.15] T.-H. Hsu, H.-T. Lue, Y.-C. King, Y.-H. Hsiao, S.-C. Lai, K.-Y. Hsieh, R. Liu, and C.-Y. Lu, “Physical model of field enhancement and edge effects of FINFET charge-trapping NAND flash devices,” IEEE Trans. Electron Devices, vol. 56, no. 6, pp. 1235 –1242, June 2009.
    [1.16] P.-C. Huang, L.-A. Chen, and J.-T. Sheu, “Electric-field enhancement of a gate-all-around nanowire thin-film transistor memory,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 216 –218, March 2010.
    [1.17] S.-C. Chen, T.-C. Chang, P.-T. Liu, Y.-C. Wu, C.-C. Ko, S. Yang, L.-W. Feng, S. M. Sze, C.-Y. Chang, and C.-H. Lien, “Pi-shape gate Polycrystalline silicon thin-film transistor for nonvolatile memory applications,” Appl. Phys. Lett., vol. 91, no. 21, pp. 213101 – 213101–3, Nov 2007.
    [1.18] L.-J. Chen, Y.-C. Wu, J.-H. Chiang, M.-F. Hung, C.-W. Chang, and P.-W. Su, “Comprehensive study of pi-gate nanowires poly-Si TFT nonvolatile memory with an HfO charge trapping layer,” IEEE Trans. Nanotechnol., vol. 10, no. 2, pp. 260 –265, March 2011.
    [1.19] G.-Q. Lo, C. Zhu, J. Fu, D.-L. Kwong, and N. Singh, “Integration of high- k dielectrics and metal gate on gate-all-around Si-nanowire-based architecture for high-speed nonvolatile charge-trapping memory,” Electron Device Letters, IEEE, vol. 30, no. 6, pp. 662 –664, June 2009

    Chapter2
    [2.1] S. Tam, P.-K. Ko, and C. Hu, “Lucky-electron model of channel hot- electron injection in MOSFET’s,” Electron Devices, IEEE Transactions on, vol. 31, no. 9, pp. 1116 – 1125, Sep 1984.
    [2.2] J. Bu and M. White, “Retention reliability enhanced SONOS NVSM with scaled programming voltage,” in Aerospace Conference Proceedings, 2002. IEEE, vol. 5, 2002, pp. 5–2383 – 5–2390 vol.5.
    [2.3] W. Tsai, N. Zous, C. Liu, C. Liu, C. Chen, T. Wang, S. Pan, C.-Y. Lu, and S. Gu, “Data retention behavior of a SONOS type two-bit storage flash memory cell,” in Electron Devices Meeting, 2001. IEDM ’01. Technical Digest. International, 2001, pp. 32.6.1 –32.6.4.
    [2.4] K. San, C. Kaya, and T. Ma, “Effects of erase source bias on flash EPROM device reliability,” Electron Devices, IEEE Transactions on, vol. 42, no. 1, pp. 150 –159, Jan 1995.
    [2.5] T. Sugizaki, M. Kobayashi, M. Ishidao, H. Minakata, M. Yamaguchi, Y. Tamura, Y. Sugiyama, T. Nakanishi, and H. Tanaka, “Novel multi-bit SNOS type flash memory using a high-k charge trapping layer,” in VLSI Technology, 2003. Digest of Technical Papers. 2003 Symposium on, June 2003, pp. 27 – 28.
    [2.6] Y.-N. Tan, W.-K. Chim, B. J. Cho, and W.-K. Choi, “Over-erase phenomenon in SONOS-type flash memory and its minimization using a hafnium oxide charge storage layer,” Electron Devices, IEEE Transactions on, vol. 51, no. 7, pp. 1143 – 1147, July 2004.
    [2.7] S. Mahapatra, S. Shukuri, and J. Bude, “CHISEL flash EEPROM – Part I: Performance and scaling,” IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 49, no. 7, pp. 1296–1301, Jul 2002.

    Chapter 3
    [3.1] J.-G. Yun, I. L. H. Park, S. Cho, J. H. Lee, D.-H. Kim, G. S. Lee, Y. Kim, J.-D. Lee, and B.-G. Park, “Formation of Si-rich silicon nitride with low deposition rate by using LPCVD for nanoscale non-volatile-memory application,” JOURNAL OF THE KOREAN PHYSICAL SOCI-ETY, vol. 51, no. 3, pp. S229–S233, DEC 2007, 14th Korean Conference on Semiconductors, Cheju Isl, SOUTH KOREA, FEB 08-09, 2007
    [3.2] T.-S. Chen, K.-H. Wu, H. Chung, and C.-H. Kao, “Performance improvement of SONOS memory by bandgap engineering of charge-trapping layer,” Electron Device Letters, IEEE, vol. 25, no. 4, pp. 205 – 207, April 2004.
    [3.3] H.-T. Lue, S.-C. Lai, T.-H. Hsu, Y.-H. Hsiao, P.-Y. Du, S.-Y. Wang, K.-Y. Hsieh, R. Liu, and C.-Y. Lu, “A critical review of charge-trapping nand flash devices,” in Solid-State and Integrated-Circuit Technology, 2008. ICSICT 2008. 9th International Conference on, oct. 2008, pp. 807 –810.
    [3.4] Y. Wang, D. Gao, W. Hwang, C. Shen, G. Zhang, G. Samudra, Y. Yeo, and W. Yoo, “Fast erasing and highly reliable MONOS type memory with hfo2 high-k trapping layer and Si3N4/SiO2 tunneling stack,” in Electron Devices Meeting, 2006. IEDM ’06. International, Dec. 2006, pp. 1 –4.
    [3.5] P.-H. Tsai, K.-S. Chang-Liao, T.-Y. Wu, T.-K. Wang, P.-J. Tzeng, C.-H. Lin, L.-S. Lee, and M.-J. Tsai, “Novel SONOS-type nonvolatile memory device with stacked tunneling and charge-trapping layers,” in Semiconductor Device Research Symposium, 2007 International, Dec. 2007, pp.1 –2.
    [3.6] D. Gilmer, N. Goel, H. Park, C. Park, S. Verma, G. Bersuker, P. Lysaght, H.-H. Tseng, P. Kirsch, K. Saraswat, and R. Jammy, “Engineering the complete MANOS-type NVM stack for best in class retention performance,” in Electron Devices Meeting (IEDM), 2009 IEEE International, Dec. 2009, pp. 1 –4.
    [3.7] T. H. Kim, I. H. Park, J. D. Lee, H. C. Shin, and B.-G. Park, “Electron trap density distribution of Si-rich silicon nitride extracted using the modified negative charge decay model of silicon-oxide-nitride-oxide-silicon structure at elevated temperatures,” Applied Physics Letters, vol. 89, no. 6, pp. 063 508 –063 508–3, Aug 2006.

    Chapter 4
    [4.1] H. Tanaka, M. Kido, K. Yahashi, M. Oomura, R. Katsumata, M. Kito, Y. Fukuzumi, M. Sato, Y. Nagata, Y. Matsuoka, Y. Iwata, H. Aochi, and A. Nitayama, “Bit cost scalable technology with punch and plug process for ultra high density flash memory,” in VLSI Technology, 2007 IEEE Symposium on, June 2007, pp. 14 –15.
    [4.2] J. Jang, H.-S. Kim, W. Cho, H. Cho, J. Kim, S. I. Shim, Y. Jang, J.-H. Jeong, B.-K. Son, D. W. Kim, Kihyun, J.-J. Shim, J. S. Lim, K.-H. Kim, S. Y. Yi, J.-Y. Lim, D. Chung, H.-C. Moon, S. Hwang, J.-W. Lee, Y.-H. Son, U.-I. Chung, and W.-S. Lee, “Vertical cell array using TCAT(terabit cell array transistor) technology for ultra-high density NAND flash memory,” in VLSI Symp. Tech. Dig., 2009, pp. 192 –193.
    [4.3] H.-T. Lue, T.-H. Hsu, Y.-H. Hsiao, S. Hong, M. Wu, F. Hsu, N. Lien, S.-Y. Wang, J.-Y. Hsieh, L.-W. Yang, T. Yang, K.-C. Chen, K.-Y. Hsieh, and C.-Y. Lu, “A highly scalable 8-layer 3d vertical-gate (VG) TFT NAND flash using junction-free buried channel BE-SONOS device,” in VLSI Symp. Tech. Dig., 2010, pp. 131 –132.
    [4.4] P.-C. Huang, L.-A. Chen, and J.-T. Sheu, “Electric-field enhancement of a gate-all-around nanowire thin-film transistor memory,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 216 –218, March 2010.
    [4.5] T.-H. Hsu, H.-T. Lue, Y.-C. King, Y.-H. Hsiao, S.-C. Lai, K.-Y. Hsieh, R. Liu, and C.-Y. Lu, “Physical model of field enhancement and edge effects of FINFET charge-trapping NAND flash devices,” IEEE Trans. Electron Devices, vol. 56, no. 6, pp. 1235 –1242, June 2009.
    [4.6] S.-C. Chen, T.-C. Chang, P.-T. Liu, Y.-C. Wu, C.-C. Ko, S. Yang, L.-W. Feng, S. M. Sze, C.-Y. Chang, and C.-H. Lien, “Pi-shape gate polycrystalline silicon thin-film transistor for nonvolatile memory applications,” Applied Physics Letters, vol. 91, no. 21, pp. 213 101 –213 101–3, Nov 2007.
    [4.7] G.-Q. Lo, C. Zhu, J. Fu, D.-L. Kwong, and N. Singh, “Integration of high- k dielectrics and metal gate on gate-all-around Si-nanowire-based architecture for high-speed nonvolatile charge-trapping memory,” Electron Device Letters, IEEE, vol. 30, no. 6, pp. 662 –664, June 2009
    [4.8] P.-T. Liu, C. S. Huang, and C. W. Chen, “Enhanced planar poly-Si TFT EEPROM cell for system on panel applications,” ELECTROCHEMICAL AND SOLID STATE LETTERS, vol. 10, no. 8, pp. J89–J91, 2007.
    [4.9] H.-H. Hsu, T.-W. Liu, C.-D. Lin, C. Kuo-Jung, T.-Y. Huang, and H.-C. Lin, “Tri-gated poly-Si nanowire SONOS devices,” in VLSI Technology,Systems, and Applications, 2009. VLSI-TSA ’09. International Symposium on, April 2009, pp. 148 –149.
    [4.10] T.-C. Liao, S.-K. Chen, M. Yu, C.-Y. Wu, T.-K. Kang, F.-T. Chien, Y.-T. Liu, C.-M. Lin, and H.-C. Cheng, “A novel LTPS-TFT-based charge-trapping memory device with field-enhanced nanowire structure,” in Electron Devices Meeting (IEDM), 2009 IEEE International, Dec. 2009, pp. 1 –4.

    Chapter 5
    [5.1] Y. N. Tan, W. Chim, W. K. Choi, M. S. Joo, and B. J. Cho, “Hafnium aluminum oxide as charge storage and blocking-oxide layers in SONOS- type nonvolatile memory for high-speed operation,” Electron Devices, IEEE Transactions on, vol. 53, no. 4, pp. 654 – 662, April 2006.
    [5.2] C.-C. Wang, K.-S. Chang-Liao, C.-Y. Lu, and T.-K. Wang, “Enhanced band-to-band-tunneling-induced hot-electron injection in p-channel flash by band-gap offset modification,” Electron Device Letters, IEEE, vol. 27, no. 9, pp. 749 –751, Sept. 2006.
    [5.3] Y.-C. Wu, C.-Y. Chang, T.-C. Chang, P.-T. Liu, C.-S. Chen, C.-H. Tu, H.-W. Zan, Y.-H. Tai, and S. M. Sze, “High performance and high reliability polysilicon thin-film transistors with multiple nano-wire channels,” in Electron Devices Meeting, 2004. IEDM Technical Digest.
    IEEE International, Dec. 2004, pp. 777 – 780.
    [5.4] J. Fu, Y. Jiang, N. Singh, C. Zhu, G. Lo, and D. Kwong, “Polycrystalline Si nanowire SONOS nonvolatile memory cell fabricated on a gate-all-around (GAA) channel architecture,” Electron Device Letters, IEEE, vol. 30, no. 3, pp. 246 –249, March 2009.
    [5.5] P.-C. Huang, L.-A. Chen, and J.-T. Sheu, “Electric-field enhancement of a gate-all-around nanowire thin-film transistor memory,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 216 –218, March 2010.
    [5.6] C.-Y. Wu, Y.-T. Liu, T.-C. Liao, M. Yu, and H.-C. Cheng, “Novel dielectric-engineered trapping-charge poly-Si-TFT memory with a TiN-Alumina-Nitride-vacuum-Silicon structure,” IEEE Electron Device Lett., vol. 32, no. 8, pp. 1095 –1097, Aug. 2011.

    Chapter 6
    [6.1] P.-C. Huang, L.-A. Chen, and J.-T. Sheu, “Electric-field enhancement of a gate-all-around nanowire thin-film transistor memory,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 216 –218, March 2010.
    [6.2] C.-Y. Wu, Y.-T. Liu, T.-C. Liao, M. Yu, and H.-C. Cheng, “Novel dielectric-engineered trapping-charge poly-Si-TFT memory with a TiN-Alumina-Nitride-vacuum-Silicon structure,” IEEE Electron Device Lett., vol. 32, no. 8, pp. 1095 –1097, Aug. 2011.
    [6.3] Z.-H. Ye, K.-S. Chang-Liao, T.-C. Liu, T.-K. Wang, P.-J. Tzeng, C.-H. Lin, and M.-J. Tsai, “A novel SONOS-type flash device with stacked charge trapping layer,” Microelectron. Eng., vol. 86, no. 7-9, pp. 1863–1865, Jul. 2009.
    [6.4] Y. Wang, D. Gao, W. Hwang, C. Shen, G. Zhang, G. Samudra, Y. Yeo and W. Yoo, “Fast erasing and highly reliable MONOS type memory wit HfO2 high-k trapping layer and Si3N4/SiO2 tunneling stack,” in IEDM Tech. Dig., 2006, pp. 1 –4.
    [6.5] P.-H. Tsai, K.-S. Chang-Liao, T.-C. Liu, T.-K. Wang, P.-J. Tzeng, C.-H. Lin, L. Lee, and M.-J. Tsai, “Charge-trapping-type flash memory device with stacked high-k charge-trapping layer,” Electron Device Letters, IEEE, vol. 30, no. 7, pp. 775 –777, July 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE