研究生: |
黃亞勳 |
---|---|
論文名稱: |
晶界工程對超合金800H微結構與性質之影響 Effect of grain boundary engineering on microstructure and properties of 800H superalloy |
指導教授: | 葉安洲 |
口試委員: |
張士欽
王尚智 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 63 |
中文關鍵詞: | 晶界工程 、超合金 |
外文關鍵詞: | grain boundary engineering, 800H |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Incoloy800H之超合金板料在市場上佔有率大,主要應用在石化系統的管件、熱交換器、加熱爐內部組件、鍋爐及壓力容器 [1],也是未來第五代核電廠選用的材料之ㄧ [2]。近年來鈦、鎳、銅等超合金元素之價格高漲,欲致力於降低原料成本可藉由合金設計與在不改變成分的狀態下利用晶界工程來開發高經濟效益的合金[3]。Incoloy800H為沃斯田鐵系固溶強化型之超合金,成分組成以鐵-鎳-鉻為主,其他元素的添加如銅、矽、錳、鋁、鈦、碳,因此材料組織含有碳化鉻、碳化鈦 [4]。晶界工程, Grain boundary engineering (GBE)為將原始晶界的型態或本質改良已達到強化晶界之功法,藉由熱機處理來控制Grain boundary character distribution (GBCD)以及製造出高比率的特殊晶界 (special boundary) [5],特殊晶界具有相對低的晶界能[6],使得沿晶破裂、氧化、腐蝕、偏析的可能性降低 [7-15],同時增進多晶材料中延性破裂強度。晶界工程特別適合低疊差能的金屬材料,如銅、鎳等等,故800H非常適合利用GBE來提升合金效能。特殊晶界,尤其是Σ3的晶界能為最低 [16],最有利於晶界之改質,但熱機處理後,產生之Σ3多為退火雙晶,此雙晶界包含在晶粒內,對晶粒間晶界無貢獻,故須藉由多道次的熱機處理使Σ3反應生成非雙晶型之Σ3。除了提升特殊晶界量外,其特殊晶界之分佈位置亦為一重點,晶界交叉之Triple Junctions上可能產生零至三個特殊晶界,分別標為J0、J1、J2、J3(圖 1),若產生最多量的J2,將有助於各項合金性質的提升 [17]。
[1] M.J. Donachie, Superalloys: a technical guide, ASM international, (2002).
[2] R.C. Reed, The superalloys: fundamentals and applications, in: Cambridge University Press, (2006).
[3] A.K. Roy, V. Virupaksha, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 452 (2007) 665-672.
[4] W.J. Ren, R. Swindeman, Proceedings of the Asme Pressure Vessels and Piping Conference 2010, Vol 6, Pts a and B (2010) 821-836.
[5] W.E. Reitz, Jom-Journal of the Minerals Metals & Materials Society 50 (1998) 39-39.
[6] T. Watanabe, Res Mechanica 11 (1984) 47-84.
[7] F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, in: Elsevier Oxford, (2004) 183.
[8] L. Tan, K. Sridharan, T.R. Allen, Journal of Nuclear Materials 348 (2006) 263-271.
[9] K.T. Aust, U. Erb, G. Palumbo, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 176 (1994) 329-334.
[10] B. Alexandreanu, B. Capell, G.S. Was, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 300 (2001) 94-104.
[11] Y. Pan, B.L. Adams, T. Olson, N. Panayotou, Acta Materialia 44 (1996) 4685-4695.
[12] S. Bechtle, M. Kumar, B.P. Somerday, M.E. Launey, R.O. Ritchie, Acta Materialia 57 (2009) 4148-4157.
[13] G. Palumbo, P.J. King, K.T. Aust, U. Erb, P.C. Lichtenberger, Scripta Metallurgica Et Materialia 25 (1991) 1775-1780.
[14] P. Lin, G. Palumbo, U. Erb, K.T. Aust, Scripta Metallurgica Et Materialia 33 (1995) 1387-1392.
[15] M. Shimada, H. Kokawa, Z.J. Wang, Y.S. Sato, I. Karibe, Acta Materialia 50 (2002) 2331-2341.
[16] E.A. West, G.S. Was, Journal of Nuclear Materials 392 (2009) 264-271.
[17] W.F. Smith, H. Javad, Foundations of materials science and engineering, Mcgraw-Hill Publishing, (2006).
[18] G. Palumbo, E.M. Lehockey, P. Lin, U. Erb, K.T. Aust, Interfacial Engineering for Optimized Properties 458 (1997) 273-282.
[19] P. Lin, G. Palumbo, K.T. Aust, Scripta Materialia 36 (1997) 1145-1149.
[20] P. Lin, V. Provenzano, R. Heard, H. Miller, G. Palumbo, K. Vecchio, F. Jiang, T. Gabb, J. Talesman, Tms 2008 Annual Meeting Supplemental Proceedings, Vol 1: Materials Processing and Properties (2008) 293-298.
[21] V. Randle, G. Owen, Acta Materialia 54 (2006) 1777-1783.
[22] L. Tan, K. Sridharan, T.R. Allen, R.K. Nanstad, D.A. McClintock, Journal of Nuclear Materials 374 (2008) 270-280.
[23] F. Ernst, O. Kienzle, M. Ruhle, Journal of the European Ceramic Society 19 (1999) 665-673.
[24] INCOLOY 800H & 800HT, in: Special metals corporation, 2004.
[25] A. Plumtree, N.G. Persson, Metallurgical Transactions a-Physical Metallurgy and Materials Science 7 (1976) 1743-1746.
[26] J.O. Nilsson, R. Sandstrom, High Temperature Technology 6 (1988) 181-186.
[27] A.A. Tavassoli, G. Colombe, Metallurgical Transactions a-Physical Metallurgy and Materials Science 8 (1977) 1577-1580.
[28] J.C. Langevoort, I. Sutherland, L.J. Hanekamp, P.J. Gellings, Applied Surface Science 28 (1987) 167-179.
[29] M.L. Kronberg, F.H. Wilson, Transactions of the American Institute of Mining and Metallurgical Engineers 185 (1949) 501-514.
[30] D.J. Drabble, C.M. Bishop, M.V. Kral, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 42A (2011) 763-772.
[31] D.G. Brandon, Acta Metallurgica 14 (1966)
[32] A.H. King, S. Shekhar, Journal of Materials Science 41 (2006) 7675-7682.
[33] V. Randle, Materials Characterization 47 (2001) 411-416.
[34] F.J. Humphreys, M. Hatherly, Recrystallization and related annealing phenomena, in: Elsevier Oxford, (2004) 102.
[35] A.C. Yeh, K.W. Lu, C.M. Kuo, H.Y. Bor, C.N. Wei, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 530 (2011) 525-529.
[36] V. Randle, Acta Materialia 52 (2004) 4067-4081.
[37] Z. Yubin, A. Godfrey, L. Wei, L. Qing, Acta Metallurgica Sinica 45 (2009) 1159-1165.
[38] G. Palumbo, Thermomechanical processing of metallic materials, in: US patent 1997.
[39] A.J. Schwartz, W.E. King, Jom-Journal of the Minerals Metals & Materials Society 50 (1998) 50-55.
[40] Q.Y. Li, B.M. Guyot, N.L. Richards, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 458 (2007) 58-66.
[41] L. Tan, L. Rakotojaona, T.R. Allen, R.K. Nanstad, J.T. Busby, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 528 (2011) 2755-2761.
[42] X. Wang, E. Brunger, G. Gottstein, Scripta Materialia 46 (2002) 875-880.
[43] R.E. Reed-Hill, R. Abbaschian, Physical metallurgy principles, Van Nostrand Princeton, (1964).
[44] S.M. Schlegel, S. Hopkins, M. Frary, Scripta Materialia 61 (2009) 88-91.
[45] G. Palumbo, P.J. King, P.C. Lichtenberger, K.T. Aust, U. Erb, Structure and Properties of Interfaces in Materials 238 (1992) 311-316.
[46] H. Kokawa, T. Watanabe, S. Karashima, Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties 44 (1981) 1239-1254.
[47] S. Kobayashi, M. Hirata, S. Tsurekawa, T. Watanabe, 11th International Conference on the Mechanical Behavior of Materials (Icm11) 10 (2011).
[48] M. Michiuchi, H. Kokawa, Z.J. Wang, Y.S. Sato, K. Sakai, Acta Materialia 54 (2006) 5179-5184.
[49] M.P. Phaniraj, D.I. Kim, Y.W. Cho, Corrosion Science 53 (2011) 4124-4130.
[50] ASTM Standard A262-10, 2003, "Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels" ASTM International, West Conshohocken, PA (2003)
[51] G.E. Dieter, Mechanical metallurgy, in: McGraw-Hill, Singapore, (1976) 450.
[52] M. Sireesha, V. Shankar, S.K. Albert, S. Sundaresan, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 292 (2000) 74-82.
[53] S. Kou, Welding metallurgy, in: Cambridge Univ Press, (2003) 436-437.
[54] V. Randle, Acta Materialia 47 (1999) 4187-4196.
[55] G.E. Dieter, Mechanical metallurgy, in: McGraw-Hill, Singapore, (1976) 445-450.
[56] G.E. Dieter, Mechanical metallurgy, in: McGraw-Hill, Singapore, (1976) 262-263.
[57] K.K. Singh, S. Sangal, G.S. Murty, Materials Science and Technology 18 (2002) 1168-1178.
[58] L.A. Gypen, A. Deruyttere, Journal of Materials Science 12 (1977) 1028-1033.
[59] H.A. Roth, C.L. Davis, R.C. Thomson, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science 28 (1997) 1329-1335.
[60] B. Rath, M. Imam, C. Pande, Mater. Phys. Mech 1 (2000) 61-66.