研究生: |
黃印良 Huang, Yin-Liang |
---|---|
論文名稱: |
橢圓方程在有介面不規則區域的數值方法 A monotone finite difference scheme for elliptic interface problems on arbitrary domains |
指導教授: |
王偉成
Wang, Wei-Cheng |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2004 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 66 |
中文關鍵詞: | 不連續擴散係數 、橢圓方程 、介面 、不連續面 、有限差分法 、偏微分方程 、曲線座標 |
外文關鍵詞: | discontinuous diffusion coefficients, elliptic equation, interface, finite difference, partial differential equation, curvilinear coordinate |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們利用曲線座標建構一個新的差分方法來求有介面橢圓方程的數值解。所謂有介面橢圓方程是指其擴散係數、方程解本身或其流量有不連續面。我們的數值方法可以很容易地經由對四周的點值進行差分及平均而產生。同時,這個方法是對稱且正定的,所以可以利用PCG或多重網格的迭代法來進行線性系統的反解。
這個方法是「單調的」,也就是說它滿足極值原理,所以我們可以証明它是二階收斂的。我們也提出了很多的例子以及數值結果,顯示解和流量的誤差都有二階的收斂。
我們的方法自動地考慮到介面上的不連續條件,不需要額外的計算。這是此方法最大的好處,因為這樣可以保持數值解的不連續性質,在介面上不會有光滑化的失真現象。這個新的方法可以很直接地推廣到多相流的問題上,並且可以結合區域分割的方法來處理複雜形狀的區域和介面。
In this dissertation, we use body-fitting curvilinear coordinates to construct a finite difference scheme, called the Monotone Jump Condition Capturing Scheme (MJCCS), for the elliptic interface problems. The variable coefficients, the solution itself and its normal flux may be discontinuous across the interface. The entries of the coefficient matrix are easily generated via centered difference and average on neighboring mesh points. The resultant matrix of MJCCS is symmetric and positive definite. Most powerful linear solvers such as PCG and multigrid can be applied to invert the matrix.
The scheme preserves monotonicity on mild distorted grids. It is proved to achieve second-order accuracy in the sup-norm of global errors. Extensive numerical experiments are performed to demonstrate the second-order convergence rate in the numerical solution and the reconstructed flux.
Our scheme automatically captures the jump conditions in the difference formulation without extra enforcement. This is the main advantage of the new scheme. The approximation obtained by our scheme resolves the discontinuities at the interface without numerical smearing at all. Besides, one can apply the scheme to treat more general discontinuities such as multi-phase flows in a straightforward manner. We also extend the idea incorporating with the nonoverlapping domains decomposition method to tackle the domains and interfaces with complicated geometry.
Bibliography
[1] K. AZIZ AND A. SETTARI, Petroleum Reservoir Simulation, Elsevier Applied Science Publishers, London, 1979.
[2] I. BABUSKA, The finite element method for elliptic equations with discontinuous coefficients, Computing (Arch. Elektron. Rechnen), 5 (1970), pp. 207-213.
[3] J. H. BRAMBLE, B. E. HUBBARD, AND V. THOMEE, Convergence estimates for essentially positive type discrete Dirichlet problems, Math. Comp., 23 (1969), pp. 695-709.
[4] J. H. BRAMBLE AND J. T. KING, A finite element method for interface problems in domains with smooth boundaries and interfaces, Adv. Comput. Math., 6 (1996), pp. 109-138.
[5] J. H. BRAMBLE AND J. E. PASCIAK, A boundary parametric approximation to the linearized scalar potential magnetostatic field problem, Appl. Numer. Math., 1 (1985), pp. 493-514.
[6] J. H. BRAMBLE AND V. THOMEE, Pointwise bounds for discrete Green's functions, SIAM J. Numer. Anal., 6 (1969), pp. 583-590.
[7] H. CHEN AND L. GREENGARD, A method of images for the evaluation of electrostatic fields in systems of closely spaced conducting cylinders, SIAM J. Appl. Math., 58 (1998), pp. 122-141.
[8] Z. CHEN AND S. DAI, On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coefficients, SIAM J. Sci. Comput., 24 (2002), pp. 443-462.
[9] Z. CHEN AND J. ZOU, Finite element methods and their convergence for elliptic and parabolic interface problems, Numer. Math., 79 (1998), pp. 175-202.
[10] S. DENG, K. ITO, AND Z. LI, Three-dimensional elliptic solvers for interface problems and applications, J. Comput. Phys., 184 (2003), pp. 215-243.
[11] W. E AND J.-G. LIU, Essentially compact schemes for unsteady viscous incompressible flows, J. Comput. Phys., 126 (1996), pp. 122-138.
[12] ----, Vorticity boundary condition and related issues for finite difference schemes, J. Comput. Phys., 124 (1996).
[13] B. ENGQUIST AND H.-K. ZHAO, Absorbing boundary conditions for domain decomposition, Appl. Numer. Math., 27 (1998), pp. 341-365.
[14] R. E. EWING, Z. LI, T. LIN, AND Y. LIN, The immersed finite volume element methods for the elliptic interface problems, Math. Comput. Simulation, 50 (1999), pp. 63-76.
[15] R. P. FEDKIW, T. ASLAM, B. MERRIMAN, AND S. OSHER, A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152 (1999), pp. 457-492.
[16] C. I. GOLDSTEIN, The solution of exterior interface problems using a variational method with Lagrange multipliers, J. Math. Anal. Appl., 97 (1983), pp. 480-508.
[17] H. HAN, The numerical solutions of interface problems by infinite element method, Numer. Math., 39 (1982), pp. 39-50.
[18] T. Y. HOU, Z. LI, S. OSHER, AND H. ZHAO, A hybrid method for moving interface problems with application to the Hele-Shaw flow, J. Comput. Phys., 134 (1997), pp. 236-252.
[19] T. Y. HOU AND B. T. R. WETTON, Convergence of a finite difference scheme for the Navier-Stokes equations using vorticity boundary conditions, SIAM J. Numer. Anal., 29 (1992), pp. 615-639.
[20] T.-M. HWANG, W.-W. LIN, W.-C. WANG, AND W. WANG, Numerical simulation of three dimensional pyramid quantum dot, J. Comput. Phys., 196 (2004), pp. 208-232.
[21] M. KANG, R. P. FEDKIW, AND X.-D. LIU, A boundary condition capturing method for multiphase incompressible flow, J. Sci. Comput., 15 (2000), pp. 323-360.
[22] R. B. KELLOGG, Singularities in interface problems, in Numerical Solution of Partial Differential Equations, II (SYNSPADE 1970) (Proc. Sympos., Univ. of Maryland, College Park, Md., 1970), Academic Press, New York, 1971, pp. 351-400.
[23] R. B. KELLOGG, Higher order singularities for interface problems, in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz, ed., Academic Press, New York, 1972, pp. 589-602.
[24] ----, On the Poisson equation with intersecting interfaces, Applicable Anal., 4 (1975), pp. 101-129.
[25] O. A. LADYZHENSKAJA, V. J. RIVKIND, AND N. N. URAL'CEVA, Solvability of diffraction problems in the classical sense, Trudy Mat. Inst. Steklov., 92 (1966), pp. 116-146. Translated in Proceedings of the Steklov Institute of Math., no. 92 (1966), Boundary value problems of mathematical physics IV, Am. Math. Soc.
[26] R. J. LEVEQUE AND Z. L. LI, The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31 (1994), pp. 1019-1044.
[27] Z. LI AND K. ITO, Maximum principle preserving schemes for interface problems with discontinuous coefficients, SIAM J. Sci. Comput., 23 (2001), pp. 339-361 (electronic).
[28] Z. LI, T. LIN, AND X. WU, New Cartesian grid methods for interface problems using the finite element formulation, Numer. Math., 96 (2003), pp. 61-98.
[29] Z. LI, W.-C. WANG, I.-L. CHERN, AND M.-C. LAI, New formulations for interface problems in polar coordinates, SIAM J. Sci. Comput., 25 (2003), pp. 224-245 (electronic).
[30] Z. L. LI, The immersed interface method -A numerical approach for partial differential equation with interfaces, PhD thesis, University of Washington, Seattle, WA, 1994.
[31] W. LITTMAN, G. STAMPACCHIA, AND H. F. WEINBERGER, Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa (3), 17 (1963), pp. 43-77.
[32] X.-D. LIU, R. P. FEDKIW, AND M. KANG, A boundary condition capturing method for Poisson's equation on irregular domains, J. Comput. Phys., 160 (2000), pp. 151-178.
[33] X.-D. LIU AND T. C. SIDERIS, Convergence of the ghost fluid method for elliptic equations with interfaces, Math. Comp., 72 (2003), pp. 1731- 1746 (electronic).
[34] R. C. MACCAMY AND S. P. MARIN, A finite element method for exterior interface problems, Internat. J. Math. Math. Sci., 3 (1980), pp. 311- 350.
[35] A. MAYO AND A. GREENBAUM, Fast parallel iterative solution of Pois-son's and the biharmonic equations on irregular regions, SIAM J. Sci. Statist. Comput., 13 (1992), pp. 101-118.
[36] P. MORIN, R. H. NOCHETTO, AND K. G. SIEBERT, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal., 38 (2000), pp. 466-488 (electronic).
[37] S. OSHER AND R. P. FEDKIW, Level set methods: an overview and some recent results, J. Comput. Phys., 169 (2001), pp. 463-502.
[38] S. OSHER AND J. A. SETHIAN, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys., 79 (1988), pp. 12-49.
[39] C. S. PESKIN, Numerical analysis of blood flow in the heart, J. Computational Phys., 25 (1977), pp. 220-252.
[40] ----, The immersed boundary method, Acta Numer., 11 (2002), pp. 479- 517.
[41] R. PEYRET AND T. D. TAYLOR, Computational methods for fluid flow, Springer Series in Computational Physics, Springer-Verlag, New York, 1983.
[42] L. QUARTAPELLE, Numerical solution of the incompressible Navier-Stokes equations, vol. 113 of International Series of Numerical Mathematics, Birkhauser Verlag, Basel, 1993.
[43] M. SUSSMAN, P. SMEREKA, AND S. OSHER, A level set approach for computing solutions to incompressible two-phase flow, J. Comput. Phys., 114 (1994), pp. 146-154.
[44] C. WANG AND J.-G. LIU, Analysis of finite difference schemes for unsteady Navier-Stokes equations in vorticity formulation, Numer. Math., 91 (2002), pp. 543-576.
[45] W. WANG, T.-M. HWANG, W.-W. LIN, AND J.-L. LIU, Numerical methods for semiconductor heterostructures with band nonparabolicity,
J. Comput. Phys., 190 (2003), pp. 141-158.
[46] W.-C. WANG, A jump condition capturing finite difference scheme for elliptic interface problems, SIAM J. Sci. Comput., 25 (2004), pp. 1479- 1496.
[47] L.-A. YING, The infinite element method, Peking University Press, 1992.