簡易檢索 / 詳目顯示

研究生: 張絢
Chang, Hsun
論文名稱: 基於鋯鈦酸鉛平板之光子晶體波導的模型建立、設計與製作
The Modeling, Design, and Fabrication of Photonic Crystal Waveguides Based on PZT Slab
指導教授: 齊正中
Chi, Cheng-Chung
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 126
中文關鍵詞: 光子晶體鋯鈦酸鉛模擬平板式波導電子束微影
外文關鍵詞: photonic crystal, PZT, simulation, slab, waveguide, Ebeam Lithography
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鐵電物質薄膜已逐漸應用於積體光電領域,因為相較於一般介電質,這些物質的物理特性可提供更多的應用。近年來,鋯鈦酸鉛(Pb(ZrxTi1-x)O3)已成為光波導元件的熱門材料之一,其壓電性質和電光效應也被廣泛的討論。本論文中,我們研究基於鋯鈦酸鉛平板之光子晶體波導的模型建立、設計,並研究其製作之可行性。

    平板式的光子晶體波導由二維的光子晶體限制光在平面的傳導,復以折射率不同的三明治結構讓光在垂直方向形成全反射,因此可以透過適當的設計,有效的降低光的傳導衰減。本論文目的在設計及製作鋯鈦酸鉛平板之光子晶體波導的Y形分光器,為達到此目的,我們研究範圍包括二維的光子晶體的能帶計算、鋯鈦酸鉛的電光效應,並以此理論計算結果設計光波導元件。之後我們模擬二維與三維光子晶體的光傳導情形,以驗證先前的設計。元件製作方面,我們使用電子束微影系統來定義光子晶體的圖形,並用離子束蝕刻機進行蝕刻製程。我們成功的設計並製作了鋯鈦酸鉛平板之光子晶體波導和Y形分光器。


    There has been considerable interest in developing ferroelectric thin films for integrated optoelectronic devices because these films have some advantageous physical characteristics. In recent years, PZT(Pb(ZrxTi1-x)O3)has been an interesting material for optical waveguide devices due to its excellent functional properties, such as piezoelectricity, pyroelectricity, and EO effects.

    In this thesis, we studied the modeling, design and fabrication feasibility of PZT slab photonic crystal optical waveguides, which incorporated 2-D photonic crystal geometries for lateral confinement of light and total internal reflection for vertical confinement. The propagation loss could be substantially reduced for properly designed photonic crystal waveguides. We designed and fabricated Y-branch Beam-splitter. Towards this goal, we did the band structure calculations of various 2D photonic crystals and studied the EO effect of PZT. The results of the band structure were used as a guide for proper waveguide designs. Then we did 2-D and 3-D photonic crystal waveguides simulation to verify the design. We used Ebeam lithography to define the photonic crystal patterns and ion beam etcher for the etching process. The PZT photonic crystal waveguides and Y-branch Beam-splitter were successfully designed and fabrication.

    Chapter I Introduction 1.1 Photonic Crystal 1 1.1.1 2D Photonic Crystal 1 1.1.2 Defect in 2D Photonic Crystal 2 1.1.3 Photonic Crystal Slab 2 1.2 Optical Properties of PZT 3 1.3 Experiment 3 1.4 Brief Statement of Thesis 4 Chapter II Band Structure of 2D Photonic Crystal 2.1 Electromagnetic Waves Propagating in Periodic Structure Dielectric Material 5 2.1.1 H-polarization 6 2.1.2 E-polarization 7 2.2 Three 2-D Structures 10 2.2.1 Square Lattice 10 2.2.2 Triangular Lattice 14 2.2.3 Honeycomb Lattice 18 2.3 Convergence 21 2.4 Band Structure of Our Sample 23 Chapter III PZT 3.1 EO Effect 24 3.2 Theory of Measuring EO Effect 27 3.3 Information of Sample 28 3.4 Measurement of EO Effect 29 Chapter IV Modeling and Simulation 4.1 Theory 31 4.1.1 The Finite-Difference Time-Domain (FDTD) Method 31 4.1.2 Absorbing Boundary Conditions 31 4.1.3 The Software 31 4.2 Simulation of 2D Photonic Crystal 32 4.2.1 Propagation in 2D Photonic Crystal 32 A. Rod Photonic Crystal Structure 32 B. Hole Photonic Crystal Structure 35 4.2.2 Propagation Dependence on Width of Band Gap 40 (Rod Photonic Crystal Structure) 4.2.3 Propagation in Different Line Defects of Square Lattice 43 A. Rod Photonic Crystal Structure 43 B. Hole Photonic Crystal Structure 58 4.2.4 Different Line Defects of Triangular Lattice 72 A. Rod Photonic Crystal Structure 72 B. Hole Photonic Crystal Structure 75 4.2.5 Using Modified Wavelength to Help Propagation through The Bent 79 (Hole Photonic Crystal Structure) 4.2.6 Using Specific Defect to Help Propagation 87 (Hole Photonic Crystal Structure) 4.3 Thickness of Slab Photonic Crystal Waveguides 90 4.3.1 Propagation Properties Dependence of Thickness 90 4.3.2 Simulation And Results 90 Chapter V Design and Fabrication 5.1 Design of Device 93 5.2 Steps of Fabrication 96 5.3 PMMA Coating 97 5.3.1 Double-layer PMMA 97 5.3.2 Spin-Coating 97 5.4 Ebeam Lithography 98 5.4.1 GDSII Files 98 5.4.2 Exposures 103 5.4.3 Tuning Focusing / Aligning Using Single Scan 106 5.5 Ion Beam Etching 107 5.5.1 Etching of PZT 107 5.5.2 Equipment of Ion Beam Etching 108 5.5.3 Experiment and Results of Ion Beam Etching 111 5.6 Device Testing 113 Chapter VI Conclusion 115

    1. J.D Joannopoulos, et al., Photonic Crystals, Princeton University Press, 1995
    2. Hiroshi Nishihara, Masamitsu Haruna, Toshiaki Suhara, “Optical Integrated Circuits”, McGraw-Hill Book Company, 1987
    3. 王海蒂, 兆赫頻段二為光子晶體—採用蝕刻過的矽晶片疊堆 Two-Dimensional Photonic Crystal in THz Range-Using Etched Silicon Wafer Stack, 國立清華大學物理系碩士論文, Jun. 2001
    4. Masatoshi Tokushima, Hideo Kosaka, Akihisa Tomita, and Hirohito Yamada, Lightwave propagation through a 120° sharply bent single-line-defect photonic crystal waveguide, Applied Physics Letters, 76(8) 2000
    5. Marko Loncar, Dusan Nedeljkovic, Theodor Doll, Jelena Vuckovic, Axel Scherer, and Thomas P. Pearsall, Waveguiding in planar photonic crystals, Applied Physics Letters, 77(13) 2000
    6. Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, Light-propagation Characteristics of Y-branch Defect Waveguides in AlGaAs-based air-bridge-type 2D Photonic Crystal Slabs, Opt. Lett. 27(6), 2002
    7. Takao Kawaguchi, Hideaki Adachi, Kentaro Setsune, Osamu Yamazaki, and Kiyotaka Wasa, PLZT Thin-Film Waveguides, Applied Optics, Vol. 23, No. 13, July 1984
    8. G. H. Jin, Y.K. Zou, S.W. Liu, Y. L. Lu, J. Zhao, M. Cronin-Golomb, “PLZT Film Waveguide Mach-Zehnder Electrooptic Modulator”, J. Lightwave Technology, Vol. 18, No. 6, June 2000
    9. K. Nashimoto, S. Nakamura, H. Moriyama, and E. Osakabe, “Electro-optic beam deflector using epitaxial Pb(Zr0.52Ti0.48)O3 waveguides on Nb-doped SrTiO3”, Appl. Phys. Lett., Vol. 73, No. 3, p303~p305, (1998).
    10. K. Nashimoto, S. Nakamura, T. Morikawa, H. Moriyama, and M. Watanabe, “Fabrication of electro-optic Pb(Zr0.52Ti0.48)O3 heterostructure waveguides on Nb-doped SrTiO3 solid-phase epitaxy”, Appl. Phys. Lett., Vol. 74, No. 19, p2761~p2763, (1999).
    11. K. Nashimoto, “PLZT Thin Film Optical Waveguide Devices”
    12. Massood Tabib-Azar, Integrated Optics, Microsructures and Sensors, Kluwer Academics Publishers
    13. A. Petraru, J. Schubert, M. Schmid, and Ch. Buchal, “Ferroelectric BaTiO3 thin-film optical modulators”, Appl. Phys. Lett., Vol. 81, No. 8, p1375~p1377, (2002).
    14. Ashcroft, Mermin, Solid State Physics, Harcourt College Publishers, 1976
    15. K. Sokoda, Optical Properties of Photonic Crystals, Springer, 2001
    16. E. Yablonovitch and T. J. Gmitter, Photonic band structure: The face-centered-cubic case employing nonspherical atoms, Phys. Rev. Lett. 67, 2295–2298 (1991)
    17. D.N. Chigrin, et al., One-dimensional Periodic Structures under A New Light, 2001
    18. 林鳳瑜 兆赫頻段二維與三維光子晶體之製作與量測 Fabrication and Measurement of Two-Dimensional and Three-Dimensional Photonic Crystal in Tera Hertz, 清華大學物理系碩士論文, Jun, 1993
    19. A. Adibi, X. Yong, R.K. Lee, A. Yariv, and A. Sherer, Properties of The Slab Modes in Photonic Crystal Optical Waveguides, J. Lightwave Technology, Vol. 18, pp.1554-1556, Nov. 2000
    20. E. Miyai, M. Okano, M. Mochizuki, and S. Noda, Analysis of Coupling between Two-Dimensional Photonic Crystal Waveguide And External Waveguide, Appl. Phys. Lett., Vol. 81, pp. 3729-3731, 2002
    21. N. Moll and G. L. Bona, Comparison of Three
    22. Pablo Sanchis, Peter Bienstman, Bert Luyssaert, Roel Baets, and Javier Marti, Analysis of Butt Coupling in Photonic Crystals, IEEE Journal of Quantum Electronics, Vol. 40, No. 5, May 2004
    23. M. Plihal, A.A. Maradudin, Photonic Band Structure of Two-Dimensional Systems: The Triangular Lattice, Phys. Rev. B44, 8565(1991)
    24. Masanori, Wavelength Division Multiplexing and Demultiplexing with Photonic Crystal Waveguide Couplers, J. Lightwave Tech, 19(12) 2001
    25. Martijn A. van Eijkelenborg, et al., Microstructured Polymer Optical Fiber, Optics Express, 9(7) 2001
    26. K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, M. Ozaki, Appl. Phy. Lett. 75 (1999)
    27. C. C. Cheng, A. Scherer, Fabrication of Photonic Band-gap Crystals, J. Vac. Sci. Tech. B 13(6) 1995
    28. T. Ochiai, K., Sokoda, Dispersion Relation and Optical Transmittance of A Hexagonal Photonic Crystal Slab, Phys. Rev. B 63, 2001
    29. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherr, T. P. Pearsall, Waveguiding in Planar Photonic Crystals, Appl. Phys. Lett. 77(13), 2000
    30. M. Tokushima, H. Kosaka, A. Tomita, H. Yamada, Lightwave Propagation through A 120° Sharply Bent Single-line-defect Photonic Crystal Waveguide, Appl. Phys. Lett., 76(8), 2000
    31. Fernando Aqulló-Lópes, Fernando Aqulló-Rueda and José Manuel Cabrera, “Electrooptics”, ACADEMIC PRESS, (1994). Appendix 3A
    32. B. G. Potter, M. B. Sinclair, and D. Dimos, “Electro-optical characterization of Pb(Zr,Ti)O3 thin films by waveguide refractometry”, Appl. Phys. Lett., Vol. 63, No. 16, p2180~p2182, (1993).
    33. 龔達翔, 鋯鈦酸鉛平面光波導元件之設計與製作Design and Fabrication of PZT Optical Waveguide device, 國立清華大學工程與系統科學研究所碩士論文, Aug. 1994
    34. Yee, K. S., Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans, Antennas and Propagation, Vol. 4, 1966, pp. 302-307.
    35. Steven G. Johnson, Shanhui Fan, Pierre R. Villeneuve, and J. D. Joannopoulos, Guided Modes in Photonic Crystal Slabs, Physical Rev. B, Vol. 60, No. 8, Aug 1999
    36. S. Oliver, H. Benisty, M. Rattier, C. Weisbuch, M. Qiu, A. Karlsson, C. J. Smith, R. Houdre, and U. Oesterle, Resonant And Nonresonant Transmission through Waveguide Bends in A Planar Photonic Crystal, Applied Physics Letters, Vol. 79, No. 16, Oct 2001
    37. M. Kamp, M. Emmering, S. Kuhn, and A. Forchel, Nanolithography Using A 100KV Electron Beam Lithography System with A Schottky Emitter, J. Vac. Sci. Technol. B 17(1), Jan/Feb 1999
    38. P. R. Deshmukh, W. S. Khokle, On Proximity Exposure Compensation in Electron-Beam Lithography, IEEE Transaction on Electron Devices, Vol. 36, No. 9, September 1989
    39. Dial, C.C. Cheng, A. Scherer, Fabrication of High-Density Nanostructrues by Electron Beam Lithography, J. Vac. Sci. Technol. B 16(6), Nov/Dec 1998
    40. Yoshihiro Todokoro, Double-Layer Resist Films for Submicrometer Electron-Beam Lithography, IEEE Journal of Solid-State Circuits, Vol. SC-15, No. 4, Aug 1980
    41. S. Mancha, Ferroelectrics 135, 131, 1992
    42. Mark A. Title, L. M. Walpita, Wei-Xi Chen, Sing H. Lee, and William S. C. Chang, Reactive Ion Beam Etching of PLZT Electrooptic Substrates with Repeated Self-Aligned Masking, Applied Optics, Vol. 25, No.9, May 1986
    43. M. R. Poor and C. B. Fleddermann, Measurements of Etch Rate And Film Stoichiometry Variations during Plasma Etching of Lead-Lanthathanum-Zirconium-Titanate Thin Films, J. Appl. Phys. Vol. 70, No. 6, September 1991
    44. Katsuaki Saito, Jai Ho Choi, Takuya Fukuda and Michio Ohue, Reactive Ion Etching of Sputtered PbZr1-xTixO3 Thin Films, Jpn. J. Appl. Phys. Vol. 31, Part 2, No 9A, September 1992
    45. Dilip P. Vijay, Seshu B. Desu, and W. Pan, Reactive Ion Etching of Lead Zirconate Titanate (PZT) Thin Film Capacitors, J. Electrochem. Soc., Vol. 140, No. 9, September 1993
    46. G. Suchaneck, R. Tews, G. Gerlach, A Model for Reactive Ion Etching of PZT Thin Films, Surface and Coatings Technology 116-119, 1999
    47. H. Mace, H. Achard and L. Peccoud, Reactive Ion Etching of Pt/PZT/Pt Ferroelectric Thin Film Capacitors in High Density DECR Plasma, Microelectronic Engineering 29, 1995
    48. Chee Won Chung, Reactive Ion Etching of Pb(Zr1-xTix)O3 Thin Films in an Inductively Coupled Plasma, J. Vac. Sci. Technology. B 16(4), Jul/Aug 1998
    49. Y. J. Lee, H. R. Han, J. Lee, G. Y. Yeom, A Study of Lead Zirconate Titanate etching characteristics Using Magnetized Inductively Coupled Plasmas, Surface and Coatings Technology 131, 2000
    50. M. Bale and R. E. Palmer, Deep Plasma Etching of Piezoelectric PZT with SF6, J. Vac. Sci. Technology. B 19(6), Nov/Dec 2001
    51. C. Soyer, E. Cattan, D. Remiens, and M.Guilloux-Viry, Ion Beam Etching of Lead-Zirconate-titanate thin films: Correlation between etching parameters and electrical properties evolution, Journal of Applied Physics, Vol. 92, No.2, July 2002
    52. Yasuyuki Okamura, Shinji Yoshinaka, and Sadahiko Yamamoto, Measuring Mode Propagation Losses of Integrated Optical Waveguides: A Simple Method, Applied Optics, Vol. 22, No. 23, December 1983

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE