簡易檢索 / 詳目顯示

研究生: 王一森
Wang, Yi Sen
論文名稱: 雙極型二苄環庚烯衍生物和其芴螺旋共軛體在染料敏化太陽能電池和有機電激發光二極體之應用
Ambipolar Dibenzosuberene Derivatives and Their Spirofluorene Hybrids for Dye-Sensitized Solar Cell and Organic Light-Emitting Diodes Applications
指導教授: 陳建添
Chen, Chien Tien
口試委員: 季昀
Chi, Yun
周卓煇
Jou, Juo Huei
洪文誼
Hung, Wen Yi
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 309
中文關鍵詞: 有機電激發光二極體染料敏化太陽能電池雙極型二苄環庚烯苯并噻二唑磷光主體材料熱活化型延遲螢光
外文關鍵詞: Organic Light-Emitting Diodes, Dye-Sensitized Solar Cell, Ambipolar, Dibenzosuberene, 2,1,3-Benzothiadiazole, Phosphorescent host material, Thermally activated delayed fluorescence
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們成功地合成出一系列以二芐環庚烯 (DBE) 為核心架構的有機染料敏化材料,在 C3 與 C7 位置接上二苯胺基與 N,N-二苯基噻吩基-2-胺作為電子予體,並在 C5 位置接上 α-cyanoacrylic acid 及不同的 π 共軛系統,得到具有 D-π-A 系統的化合物 4、8 與 13,具有 D-π-A-A 系統的化合物 22,以及具有 D-π-A-π-A 系統的化合物 26。此一系列有機染料敏化材料的最大吸收波長在 376-499 nm 之間,莫耳吸收係數在 26,300 - 56,900 M-1 cm-1 之間。在元件效率方面,表現最好的材料為化合物 26,在 AM 1.5 標準太陽光照射下元件效率 (η) 最大可達 3.28% (Voc = 633 mV, JSC = 6.78 mA/cm2, FF = 0.76),光電轉換效率 (IPCE) 在 400-550 nm 的吸收範圍可達到54%。
    我們以二苯乙烯/芴之雙重鄰位混成系統作為模板,二苯胺基做為推電子基,腈基做為拉電子基,引入在二芐環庚烯模板的 C3 及 C7 位置,與旋環芴模板的 C2’ 及 C7’ 位置,得到推拉電子基彼此間互不共軛的雙極性材料化合物 32 (N2-STIF-CN2) 與化合物 34 (CN2-STIF-N2)。以化合物 34 為主體發光材料,摻雜紅光客體發光材料 OS1 (元件結構:ITO/TAPC/CN2-STIF-N2:10% OS1/CN-STIF-CN/LiF/Al),在 1,000 cd/m2 下的放光效能為 1.6 cd/A,功率效能為 0.81 lm/W,外部量子效率為 1.6 %,最大亮度為 15,400 cd/m2,CIE 座落於 (0.65, 0.35)。我們嘗試以 BANE 與 CBP 為主體發光材料,摻雜化合物 32 與 34為客體發光材料 (元件結構:ITO/PEDOT:PSS/host : 5% dopant/TPBI/LiF/Al),但是並沒有觀察到熱活化型延遲螢光 (Thermally activated delayed fluorescence, TADF) 放光現象,其中以 CBP 為主體發光材料摻雜化合物 34 為客體發光材料有最好的元件效率,在電流密度為 20 mA/cm2 下,放光效能為 0.61 cd/A,功率效能為 0.29 lm/W,最大亮度為 858 cd/m2,CIE 座落於 (0.50, 0.48)。


    A new class of dibenzosuberene derivatives with diphenylamine and N,N-diphenylthiophen-2-amine as donor at C-3 and C-7 and with α-cyanoacrylic acid and different conjugated π-system units at C-5 were synthesized as five novel D-π-A-featured compound 4, 8 and 13 D-π-A-A-featured compound 22 and D-π-A-π-A-featured compound 26 for dye-sensitized solar cell applications. These five compounds whose maximum absorption wavelength were observed at 376 nm and 499 nm, respectively, and the molar absorption coefficient were observed at 26,300 M-1 cm-1 and 56,900 M-1 cm-1, respectively. The best device performance was D-π-A-π-A-featured compound 26, and it showed a conversion efficiency (η) of up to 3.28% (Voc = 633 mV, JSC = 6.78 mA/cm2, FF = 0.76) under AM 1.5 G conditions. And the best IPCE values achieved 54% within the 400 - 550 nm absorption range.
    Besides, we developed a new class of cis-stilbene/fluorene spiro hybrid systems with ambipolar organic fluorescent materials for organic light-emitting diodes applications. We utilized sp3-C of spiro center as the molecular bridge to suppress the donor–acceptor interactions by appending diphenylamine onto the C-3 and C-7 position and cyano group onto the C-2’ and C-7’ position for compound 32 (N2-STIF-CN2) and appending diphenylamine onto the C-2’ and C-7’ position and cyano group onto the C-3 and C-7 position for compound 34 (CN2-STIF-N2). We demonstrated red-emitting PhOLED using the compound 34 as the ambipolar host material and [Os(bpftz)2(PPhMe2)2, OS1] as red dopant (i.e., ITO/TAPC/CN2-STIF-N2:10% OS1/CN-STIF-CN/LiF/Al). This device showed a maximum current efficiency of 1.6 cd/A, power efficiency of 0.81 lm/W, EQE of 1.6%, and a maximum brightness of 15,400 cd/m2 at 1,000 cd/m2 with CIE color coordinates of (0.65, 0.35). We tried to use BANE and CBP as host material and the compound 32 and 34 as dopant (i.e., ITO/PEDOT:PSS/host : 5% dopant/TPBI/LiF/Al), but there was no thermally activated delayed fluorescence (TADF) observed in compound 32 and 34. The device with CBP as host material and compound 34 as dopant showed the best performance. The device emitted yellow light and showed a maximum current efficiency of 0.61 cd/A, power efficiency of 0.29 lm/W, and a maximum brightness of 858 cd/m2 at 20 mA/cm2 with CIE color coordinates of (0.50, 0.48).

    目錄 謝誌 中文摘要 Abstract 流程目錄 I 圖目錄 II 表目錄 XIX 第一章、緒論 1 1-1、前言 1 1-2、染料敏化太陽能電池之簡介 2 1-2-1、染料敏化太陽能電池之基本構造 4 1-2-2、染料敏化太陽能電池之工作原理 6 1-2-3、染料敏化太陽能電池之元件相關參數 10 1-2、文獻回顧 16 1-3、研究背景 29 第二章、二苄環庚烯之衍生物於染料敏化太陽能電池材料之應用 34 2-1、文獻回顧 34 2-2、分子設計、合成及結構解析 43 2-2-1、分子設計 43 2-2-2、分子合成 46 2-3、光物理、電化學性質之探討 57 2-3-1、光物理性質探討 57 2-3-2、電化學性質探討 62 2-4、染料敏化太陽能電池元件性質討論 67 第三章、緒論 86 3-1、前言 86 3-2、分子發光機制 90 3-2-1、激發 90 3-2-2、緩解 91 3-2-3、電激發光 93 3-2-4、電激發主客體系統發光機制 94 3-3、有機電激發光二極體發展 98 3-4、有機電激發光二極體元件基本構造 100 3-5、有機電激發光二極體材料 102 3-5-1、陽極材料 (anode materials) 103 3-5-2、電洞注入材料 (hole injection materials) 103 3-5-3、電洞傳輸材料 (hole transporting materials) 105 3-5-4、電洞阻擋材料 (hole blocking materials) 106 3-5-5、電子傳輸材料 (electron transporting materials) 107 3-5-6、電子注入材料 (electron injection materials) 108 3-5-7、陰極材料 (cathode materials) 109 3-5-8、螢光發光材料 (fluorescent emitting materials) 109 3-5-9、磷光發光材料 (phosphorescent emitting materials) 112 3-6、熱活化型延遲螢光 (Thermally activated delayed fluorescence, TADF) 126 3-7、有機電激發光二極體材料之電荷移動率 141 3-8、有機電激發光二極體之光色 143 3-9、有機電激發光二極體之效率 144 3-9-1、螢光 (磷光) 量子產率 144 3-9-2、發光效率及電源效率 147 3-10、元件內部之能量轉移 148 3-10-1、分子間能量轉移 148 3-10-2、產生焦耳熱 148 3-11、研究背景 149 第四章、新型雙極性順式二苯乙烯/芴螺旋體之衍生物於有機電激發光二極體材料之應用 154 4-1、文獻回顧 154 4-2、分子設計、合成及結構解析 161 4-2-1、分子設計 161 4-2-2、分子合成 164 4-2-3、X-ray 結構解析 168 4-3、熱、光物理、電化學性質之探討 175 4-3-1、熱性質探討 176 4-3-2、光物理性質探討 179 4-3-3、電化學性質探討 198 4-3-3-1、循環伏安法分析 198 4-4、元件性質討論 210 第五章、結論與未來展望 240 5-1、染料敏化太陽能電池材料 240 5-2、有機電激發光二極體材料 241 第六章、儀器設備與實驗 244 6-1、分析儀器 244 6-2、光電元件製備及量測 249 6-2-1、有機發光二極體元件製備及量測 249 6-2-2、染料敏化太陽能電池元件製備及量測 249 6-3、實驗步驟及數據分析 250 參考文獻 295 附錄壹、核磁共振光譜圖 S1 附錄貳、元素分析數據報告 S102 附錄參、X 光單晶繞射結構解析 S103

    (1) (a) Armaroli, N.; Balzani, V. Angew. Chem. Int. Ed. 2007, 46, 52. (b) Service, R. F. Science 2005, 309, 548.
    (2) National Renewable Energy Laboratory (NREL) http://www.nrel.gov/
    (3) 張正華;李陵嵐;葉楚平;楊平華,有機與塑膠太陽能電池,五南出版社,2007, p.181.
    (4) (a) W. Kautek; H. Gerischer; H. Tributsch J. Electrochem. Soc. 1980, 127, 2471. (b) W. Kautek; H. Gerischer Electrochim. Acta 1981, 26, 1771. (c) K. Tubbesing; D. Meissner; R. Memming; B. Kastening Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1986, 214, 685. (d) C. Sinn; D. Meissner; R. Memming J. Electrochem. Soc. 1990, 137, 168.
    (5) B. Oregan; M. Grätzel Nature 1991, 353, 737.
    (6) (a) M. Grätzel J. Photochem. Photobiol. A 2004, 164, 3. (b) B. Oregan; M. Grätzel Nature 1991, 353, 737. (c) M. K. Nazeeruddin; A. Kay; I. Rodicio; R. H.-B., E. Miiller; P. Liska; N. Vlachopoulos; M. Grätzel J. Am. Chem. Soc. 1993, 115, 6382.
    (7) (a) Nazeeruddin, M. K.; DeAngelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 16835. (b) Chiba, Y.; Islam, A.; Watanabe, Y.; Komiya. R.; Koide, N.; Han, L. Jpn. J. Appl. Phys., Part 2 2006, 45, L638. (c) Gao, F.; Wang, Y.; Zhang, J.; Shi, D.; Wang, M.; Humphrey-Baker, R.; Wang, P.; Zakeeruddin, S. M.; Grätzel, M. Chem. Commum. 2008, 2629.
    (8) A. Hagfeldt; G. Boschloo; L. Sun; L. Kloo; H. Pettersson Chem. Rev. 2010, 110, 6595.
    (9) M. Grätzel Progress in Photovoltaics: Research and Applications 2006, 14, 429.
    (10) M. Grätzel Nature 2001, 414, 338.
    (11) N. Robertson Angew. Chem. Int. Ed. 2006, 45, 2338.
    (12) M. Gorlov; L. Kloo Dalton Transactions 2008, 2655.
    (13) 潘宗佑 (2012),紫質敏化太陽能電池之染料共敏化分子工程,國立交通大學應用化學系碩士論文。
    (14) 李陸玲;陳建仲;刁維光,化工期刊, 2009, 42, 1799.
    (15) M. Grätzel Inorg. Chem. 2005, 44, 6841.
    (16) 周俊誠 (2014),二價釕、鋨金屬光敏染料合成及其在染敏太陽能電池上的應用,國立清華大學化學系博士論文。
    (17) A. Reynal; E. Palomares Eur. J. Inorg. Chem. 2011, 2011, 4509.
    (18) (a) L. M. Goncalves; V. de Zea Bermudez; H. A. Ribeiro; A. M. Mendes Energy Environ. Sci. 2008, 1, 655. (b) A. Hagfeldt; G. Boschloo; L. Sun; L. Kloo; H. Pettersson Chem. Rev. (Washington, DC, U. S.), 2010, 110, 6595.
    (19) K. Kalyanasundaram; M. Grätzel Coord. Chem. Rev. 1998, 177, 347.
    (20) T. W. Hamann; R. A. Jensen; A. B. F. Martinson; H. Van Ryswyk; J. T. Hupp Energy Environ. Sci. 2008, 1, 66.
    (21) N. A. Anderson; T. Lian Coord. Chem. Rev. 2004, 248, 1231.
    (22) (a) Yella, A.; Lee, H.-W.; Taso, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Eric Diau, W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M. Science, 2011, 334, 629-634. (b) Imahori, H.; Umeyama, T.; Ito, S. Acc. Chem. Res. 2009, 42, 1809. (c) Martínez-Díaz, M. V.; de la Torrea, G.; Torres, T. Chem. Commun., 2010, 46, 7090. (d) Walter, M. G.; Rudine, A. B.; Wamser, C. C. J. Porphyrins & Phthalocyanines 2010, 14, 759.
    (23) For a review, see: Giribabu, L.; Kanaparthi, R. K.; Velkannan, V. Chem. Record 2012, 12(3), 306-328.
    (24) Grätzel, M.; Zakeeruddin, S. M.; Wu, C.-G.; Grätzel, C.; Tsai, J.-H.; Decoppet, J.-D.; Ngoc-le, C.; Alibabaei, L.; Pootrakulchote, N.; Li, J.-Y.; Wang. M.; Chen, C.-Y. ACS Nano 2009, 3, 3103.
    (25) Wu, C.-G.; Ho, K.-C.; Chen, J.-G.; Wu, S.-J.; Chen, C.-Y. Angew. Chem. Int. Ed. 2006, 45, 5822.
    (26) Chou, P.-T.; Liu, W.-H.; Chung, M.-W.; Chi, Y.; Chen, K.; Hsu, H.-C.; Wu, K.-L. Chem. Commun., 2010, 46, 5124.
    (27) Shen, P.; Tang, Y.; Jiang, S.; Chen, H.; Zheng, X.; Wang, X.; Zhao, B.; Tan, S. Org. Electronics 2011, 12, 125.
    (28) Qin, C.; Islam, A.; Han, L. J. Mater. Chem. 2012, 22, 19236.
    (29) S. Cai; G. Tian; X. Li; J. Su; H. Tian J. Mater. Chem. A 2013, 1, 11295.
    (30) Chao, W.-S.; Liao, K.-H.; Chen, C.-T.; Huang, W.-K.; Lan, C.-M.; Eric Diau, W.-G. Chem. Commun. 2012, 48, 4884.
    (31) (a) Lan, C.-M.; Wu, H.-P.; Pan, T.-Y.; Chang, C.-W.; Chao, W.-S.; Chen, C.-T.; Wang, C.-L.; Lin, C.-Y.; Eric Diau, W.-G. Energy Environ. Sci. 2012, 5, 6460. (b) Wu, H.-P.; Ou, Z.-W.; Pan, T.-Y.; Lan, C.-M.; Huang, W.-K.; Lee, H.-S.; Reddy, N. M.; Chen, C.-T.; Chao, W.-S.; Yeh, C.-Y.; Eric Diau, W.-G. Energy Environ. Sci. 2012, 5, 9843.
    (32) Macor, L.; Gervaldo, M.; Fungo, F.; Otero, L.; Dittrich, T.; Lin C.-Y.; Chi, L.-C.; Fang, F.-C.; Lii, Wong, K.-T.; S.-W.; Tsai, C.-H.; Wu, C.-C. RSC Adv., 2012, 2, 4869
    (33) Heredia, D.; Natera, J.; Gervaldo, M.; Otero, L.; Fungo, F.; Lin, C.-Y.; Wong, K.-T. Org. Lett., 2010, 12, 12.
    (34) Chiang, C.-L.; Shu, C.-F.; Chen, C.-T. Org. Lett., 2005, 7, 3717.
    (35) Numata, Y.; Islam, A.; Chen, H.; Han, L. Energy Environ. Sci., 2012, 5, 8548.
    (36) Haid, S.; Marszalek, M.; Mishra, A.; Wielopolski, M.; Teuscher, J.; Moser, J.; Humphry-Baker, R.; Zakeeruddin, S. M.; Grätzel, M.; Bäuerle, P. Adv. Funct. Mater., 2012, 22, 1291.
    (37) Zhang, X.; Chen, L.; Li, X.; Mao, J.; Wu, W.; Ågren, H.; Hua, J. J. Mater. Chem. C, 2014, 2, 4063
    (38) Häupler, B.; Burges, R.; Janoschka, T.; Jähnert, T.; Wild, A.; Schubert, U. S. J. Mater. Chem. A, 2014, 2, 8999.
    (39) Gopalsamy, A.; Ciszewski, G.; Shi, M.; Berger, D.; Hu, Y.; Lee, F.; Feldberg, L.; Frommer, E.; Kim, S.; Collins, K.; Wojciechowicz, D.; Mallon, R. Bioorg. Med. Chem. Lett., 2009, 19, 6890.
    (40) Fischer, M. K. R.; Wenger, S.; Wang, M.; Mishra, A.; Zakeeruddin, S. M.; Grätzel, M.; Bäuerle, P. Chem. Mater., 2010, 22, 1836.
    (41) M. Jørgensen; F. C. Krebs J. Org. Chem. 2005, 70, 6004.
    (42) Generated by using Gaussian molecular simulation package with ZINDO Configuration Interaction using INDO/S parameters after optimizing geometry by using DGauss with the B88-LYP GGA functional with the DZVP basis sets.
    (43) Qin, P.; Zhu, H.; Edvinsson, T.; Boschloo, G.; Hagfeldt, A.; Sun, L. J. Am. Chem. Soc. 2008, 130, 8570.
    (44) Wu, Y.; Zhu, W. Chem. Soc. Rev., 2013, 42, 2039.
    (45) (a) Müllen, K.; Scherf, U.; Organic Light-Emitting Devices. Synthesis, Properties and Applications; Wiley: Weinheim, Germany, 2006. (b) Chen, C.-H.; Huang, S.-W. OLED/Organic Electroluminescent Materials & Devices; Wunan: Taipei, Taiwan, 2006.
    (46) M. A. Baldo; D. F. O’Brien; M. E. Thompson; S. R. Forrest, Phys. Rev. B, 1999, 60, 14422.
    (47) (a) R. J. Holmes; B. W. D’Andrade; S. R. Forrest; X. Ren; J. Li; M. E. Thompson, Appl. Phys. Lett. 2003, 83, 3818. (b) X. Ren; J. Li; R.J. Holmes; P. I. Djurovich; S. R. Forrest; M. E. Thompson, Chem. Mater., 2004, 16, 4743.
    (48) G. Destriau, J. Chem. Phys. 1936, 33, 587.
    (49) Bernanose, A.; Comte, M.; Vouaux, P. J. Chim. Phys. 1953, 50, 64.
    (50) Pope, M.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042.
    (51) Helfrich, W.; Schneider, W. Phys. Rev. Lett. 1965, 14, 669.
    (52) Tang, C. W.; Vanslyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
    (53) Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature 1990, 347, 539.
    (54) Bulovic, V.; Khalfin, V. B.; Gu, G.; Burrows, P. E.; Phys. Rev. B 1998, 58, 3730.
    (55) (a) Adachi, C.; Tokito, S.; Tsutsui, T.; Saito, S. Jpn. J. Appl. Phys. Part 2, 1991, 27, L269. (b) Adachi, C.; Tokito, S.; Tsutsui, T.; Saito, S. Jpn. J. Appl. Phys. Part 2. 1991, 27, L713
    (56) Ishida, T.; Kobayashi, H.; Nakato, Y.; J. Appl. Phys. 1993, 73, 4344.
    (57) VanSlyke, S.A; Chen, C.-H.; Tang, C.W. Appl. Phys. Lett. 1996, 29, 2160.
    (58) Shirota, Y.; Kuwabara, Y.; Inada, H. Appl. Phys. Lett. 1994, 65, 807.
    (59) Elschner, A.; Bruder, F.; Heuer, H.W.; Jonas, F.; Karbach, A.; Kirchmeyer, S.; Trum, S.; Wehrmann, R. Synth. Met. 2000, 11, 139.
    (60) (a) Jang, J.G.; Song, S.H. 2004, WO2004054326 (b) Y.-K. Kim; J. W. Kim; Y. Park, Appl. Phys. Lett. 2009, 94, 063305.
    (61) Deng, Z.-B.; Ding, X.-M.; Lee, S.-T.; Gmbling, W. A. Appl. Phys. Lett. 1999, 74, 2777.
    (62) Hung, L. S.; Zheng, L. R.; Mason, M. G. Appl. Phys. Lett. 2001, 78, 679.
    (63) Zhao, J.-M.; Zhang, S.-T.; Wang, X.-J.; Zhan, Y.-Q.; Wang, X.-Z.; Zhong, G.-Y.; Wang, Z.-j.; Ding, X.-M.; Huang, W.; Hou, X.-Y. Appl. Phys. Lett. 2003, 84, 2913.
    (64) Yamamoto, T.; Nishiyama, M.; Koie, Y. Tetrahedron Lett. 1998, 39, 2367.
    (65) Salbeck, J.; Yu, N.; Bauer, J.; Weissotel, F.; Bestgen, H. Synth. Met. 1997, 91, 209.
    (66) Kuwabara, Y.; Ogawa, H.; Inada, H.; Noma, N.; Shirota, Y. Adv. Mater. 1994, 6, 667.
    (67) Case, F.H.; Brennan, J.A. J. Org. Chem.1954, 19, 919.
    (68) Kinoshita, M.; Shirota, Y. Adv. Funct. Mater. 2002, 12, 780.
    (69) J. Shi; C. W. Tang; C. H. Chen, 1997, U.S. Patent 5646948
    (70) J. D. Anderson; E. M. McDonald; P. A. Lee; M. L. Anderson; E. L. Ritchie; H. K. Hall; T. Hopkins; E. A. Mash; J. Wang; A. Padias; S. Thayumanavan; S. Barlow; S. R. Marder; G. E. Jabbour; S. Shaheen; B. Kippelen; N. Peyghambarian; R. M. Wightman; N. R. Armstrong, J. Am. Chem. Soc. 1998, 120, 9646.
    (71) (a) Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1989, 55, 1489. (b) Pommerehne, J.; Vestweber, H.; Guss, W.; Mahrt, R. F.; Bassler, H.; Prosch, M.; Daub, J. Adv. Mater. 1995, 7, 551.
    (72) (a) Agrawal, A. K.; Jenekhe, S. A.; Chem. Mater. 1996, 8, 579. (b) Shetty, A. S.; Liu, E. B.; Lachicotte, R. J.; Jenekhe, S. A. Chem. Mater. 1999, 1, 2292.
    (73) (a) Kanbara, T.; Yamamoto, T.; Macromolecules 1993, 26, 3464.; (b) Yamamoto, T.; Sugiyama, K.; Kushida, T.; Inoue, T.; Kanbara, T. J. Am. Chem. Soc. 1996, 118, 3930. (c) Bard, A. J.; Lund, H.; Dekker, M. Encyclopedia of Electrochemistry of the Elements; New York, US, 1984. (d) Redecker, M.; Bradley, D. D. C.; Jandke, M.; Strohriegl, P. Appl. Phys. Lett. 1999, 75, 109.
    (74) Tonzola, C. J.; Alam, M. M; Kaminski, W.; Jenekhe, S. A. J. Am. Chem. Soc. 2003, 125, 13548.
    (75) (a) O’Brien, D. F.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R.; Appl. Phys. Lett. 1999, 74, 442. (b) Baldo, M. A.; Lamansky, S.; Burrows, P. E.; Thompson, M. E.; Forrest, S. R. Appl. Phys. Lett. 1999, 75, 4. (c) Adamovich, V. I.; Cordero, S. R.; Djurovich, P. I.; Tamayo, A.; Thompsom, M. E.; D’Andrade, B. W.; Forrest, S. R. Org. Electron. 2003, 4, 77. (d) Naka, S.; Okada, H.; Onnagawa, H.; Tsutsui, T. Appl. Phys. Lett. 2000, 76, 197.
    (76) (a) Adachi, A.; Ohshita, J.; Kunai, A.; Kido, J.; Okita, K.; Chem. Lett. 1998, 27, 1233. (b) Oshita, J.; Kai, H.; Takata, A.; Iida, T.; Kunai, A.; Ohta, N.; Komaguchi, K.; Shiotani, M.; Adachi, A.; Sakamaki K; Okita, K. Organometallics, 2001, 20, 4800.
    (77) Wakimoto, T.; Fukuda, Y.; Nagayama, K.; Yokoi, A.; Nakada, H.; Tsuchida, M. IEEE Trans. Electron. Devices. 1997, 44, 1425.
    (78) Brown, T. M.; Friend, R. H.; Millard, I. S.; Lacey, D. J.; Butler, T.; Burroughes, J. H.; Cacialli, F. J. Appl. Phys. Lett. 2003, 93, 6159.
    (79) Bulovic, V.; Khalfin, V. B.; Gu, G.; Burrows, P. E.; Phys. Rev. B 1998, 58, 3730.
    (80) (a) Zhang, Y.; Lai, S. L.; Tong, Q. X.; Lo, M. F.; Ng, T. W.; Chan, M. Y.; Wen, Z. C.; He, J.; Sham, J. K.; Tang, X. L. Chem. Mater. 2012, 24, 61. (b) Xiaohui Yang; Shijun Zheng; Rebecca Bottger; Hyun Sik Chae; Takeshi Tanaka; Sheng Li; Amane Mochizuki; Ghassan. E. Jabbour J. Phys. Chem. C, 2011, 115, 14347.
    (81) (a) Ku, S. Y.; Chi, L. C.; Hung, W. Y.; Yang, S. W.; Tsai, T. C.; Wong, K. T.; Chen, Y. H.; Wu, C. I. J. Mater. Chem. 2009, 19, 773. (b) Yi Yuan; Guo-Qiang Zhang; Feng Lu; Qing-Xiao Tong; Qing-Dan Yang; Hin-Wai Mo; Tsz-Wai Ng; Ming-Fai Lo; Zheng-Qing Guo; Chuan Wu; Chun-Sing Lee Chem. Asian J. 2013, 8, 1253.
    (82) (a) Yeh, H. C.; Yeh, S. J.; Chen, C. T. Chem. Commun. 2003, 2632. (b) Lee, Y. T.; Chiang, C. L.; Chen, C. T. Chem. Commun. 2008, 217.
    (83) Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1990, 56, 799.
    (84) Cao, Y.; Parker, I. D.; Y, G.; Zhang, C.; Heeger, A. Nature 1999, 397, 414.
    (85) Hosokawa, C.; Sakamoto, S. 1995, U.S. 5389444
    (86) Atul Chaskar; H.-F. Chen; K.-T. Wong, Adv. Mater. 2011, 23, 3876.
    (87) (a) R. J. Holmes; S. R. Forrest; Y.-J. Tung; R. C. Kwong; J. J. Brown ; S. Garon; M. E. Thompson, Appl. Phys. Lett. 2003 , 82 , 2422 . (b) S. Tokito; T. Iijima; Y. Suzuri; H. Kita; T. Tsuzuki; F. Sato, Appl. Phys. Lett. 2003 , 83 , 569 . (c) J. Kavitha; S.-Y. Chang; Y. Chi; J.-K. Yu; Y.-H. Hu; P.-T. Chou; S.-M. Peng; G.-H. Lee; Y.-T. Tao; C.-H. Chien; A. J. Carty , Adv. Funct. Mater. 2005 , 15 , 223 .
    (88) (a) S. Lamansky; P. Djurovich; D. Murphy; F. Abdel-Razzaq; H. E. Lee; C. Adachi; P. E. Burrows; S. R. Forrest; M. E. Thompson, J. Am. Chem. Soc. 2001, 123, 4304. (b) T. Tsutsui; M. J. Yang; M. Yahiro; K. Nakamura; T. Watanabe; T. Tsuji; M. Fukuda; T. Wakimoto; S. Miyaguchi, Jpn. J. Appl. Phys. Part 2, 1999, 38, L1502. (c) C. Adachi; R. C. Kwong; S. R. Forrest, Org. Electron., 2001, 2, 37. (d) M. A. Baldo; M. E. Thompson; S. R. Forrest, Nature (London), 2000, 403, 750. (e) B. W. D’Andrade; M. A. Baldo, C. Adachi; J. Brooks; M. E. Thompson; S. R. Forrest, Appl. Phys. Lett., 2001, 79, 1045. (f) T. Watanabe; K. Nakamura; S. Kawami; Y. Fukuda; T. Tsuji; T. Wakimoto; S. Miyaguchi; M. Yahiro; M. J. Yang; T. Tsutsui., Synth. Met., 2001, 122, 203.
    (89) C. Adachi; R. C. Kwong; P. Djurovich; V. Adamovich; M. A. Baldo; M. E. Thompson; S. R. Forrest, Appl. Phys. Lett., 2001, 79, 2082.
    (90) (a) V. Adamovich; J. Brooks; A. Tamayo; A. M. Alexander; P. I. Djurovich; B. W. D’Andrade; C. Adachi; S. R. Forrest; M. E. Thompson, New J. Chem., 2002, 26, 1171. (b) R. J. Holmes; S. R. Forrest; Y.-J. Tung; R. C. Kwong; J. J. Brown; S. Garon; M. E. Thompson, Appl. Phys. Lett., 2003, 82, 2422.
    (91) S. Tokito; T. Iijima; Y. Suzuri; H. Kita; T. Tsuzuki; F. Sato, Appl. Phys. Lett., 2003, 83, 569.
    (92) W. Li; J. Qiao; L. Duan; L. Wang; Y. Qiu , Tetrahedron 2007 ,63 ,10161.
    (93) M. Ikai; S. Ichinosawa; Y. Sakamoto; T. Suzuki; Y. Taga, Appl. Phys. Lett., 2001, 79, 156.
    (94) T. Tsuzuki; S. Tokito , Appl. Phys. Lett. 2009 , 94 , 33302 .
    (95) J.-W. Kang; D.-S. Lee; H.-D. park; J. W. Kim; W.-I. Jeong; Y.-S. Park; S.-H. Lee; K. Go; J.-S. Lee; J.-J. Kim , Org. Electron. 2008 , 9 , 452 .
    (96) H. Inomata; K. Goushi; T. Masuko; T. Konno; T. Imai; H. Sasabe; J. J. Brown; C. Adachi, Chem. Mater., 2004, 16, 1285.
    (97) T. Tsuji; S. Kawami; S. Miyaguchi; T. Naijo; T. Yuki; S. Matsuo; H. Miyazaki, Proceedings of SID’04, p.900, May 23-28, 2004, Seattle, USA.
    (98) P. E. Burrows; A. B. Padmaperuma; L. S. Sapochak; P. Djurovich; M. E. Thompson, Appl. Phys. Lett., 2006, 18, 183503.
    (99) P. A. Vecchi; A. B. Padmaperuma; H. Qiao; L. S. Sapochak; P. E. Burrows, Org. Lett., 2006, 8 (19), 4211.
    (100) A. B. Padmaperuma; L. S. Sapochak; P. E. Burrows, Chem. Mater., 2006, 18, 2389.
    (101) S. O. Jeon; S. E. Jang; H. S. Son; J. Y. Lee , Adv. Mater. 2011 , 23 ,1436.
    (102) (a) S.-J. Su; H. Sasabe; T. Takeda; J. Kido , Chem. Mater. 2008 , 20 ,1691. (b) S.-J. Su; C. Cai; J. Kido , Chem. Mater. 2011 , 23 , 274.
    (103) Y. Tao; Q. Wang; L. Ao; C. Zhong; J. Qin; C. Yang; D. Ma , J. Mater. Chem. 2010 , 20 , 1759.
    (104) Ge, Z.; Hayakawa, T.; Ando, S.; Ueda, M.; Akiike, T.; Miyamoto, H.; Kajita, T.; Kakimoto, M. Org. Lett. 2008, 10, 421.
    (105) (a) Lai, M.-Y.; Chen, C.-H.; Huang, W.-S.; Lin, J.-T.; Ke, T.-H.; Chen, L.-Y.; Tsai, M.-H.; Wu, C.-C. Angew. Chem. Int. Ed. 2008, 47, 581. (b) Chen, C.-H.; Huang, W.-S.; Lai, M.-Y.; Tsao, W.-C.; Lin, J.-T.; Wu, Y.-H.; Ke, T.-H.; Chen, L.-Y.; Wu, C.-C. Adv. Funct. Mater. 2009, 19, 2661.
    (106) (a) Y. T. Tao; Q. Wang; Y. Shang; C. L. Yang; L. Ao; J. G. Qin; D. Ma; Z. G. Shuai, Chem. Commun. 2009, 77. (b) Y. T. Tao; Q. A. Wang; C. L. Yang; C. Zhong; J. D. Qin; D. Ma, Adv. Funct. Mater. 2010, 20, 2923. (c) Y. Tao; Q. Wang; L. Ao; C. Zhong; J. Qin; C. Yang; D. Ma, J. Mater. Chem. 2010, 20, 1759.
    (107) S. Y. Ku; W. Y. Hung; C. W. Chen; S. W. Yang; Ejabul Mondal; Y. Chi; K. T. Wong, Chem. Asian J. 2012, 7, 133.
    (108) C. Adachi; M. A. Baldo; S. R. Forrest; S. Lamansky; M. E. Thompson; R. C. Kwong, Appl. Phys. Lett., 2001, 78, 1622.
    (109) A. Tsuboyama; H. Iwawaki; M. Furugori; T. Mukaide; J. Kamatani; S. Igawa; T. Moriyama; S. Miura; T. Takiguchi; S. Okada; M. Hoshino; K. Ueno, J. Am. Chem. Soc., 2003, 125, 12971.
    (110) Y.-L. Tung; S.-W. Lee; Y. Chi; Y.-T. Tao; C.-H. Chien; Y.-M. Cheng; P.-T. Chou; S.-M. Peng; C.-S. Liu, J. Mater. Chem. 2005, 15, 460.
    (111) P.-I Shih; C.-F. Shu; Y.-L. Tung; Y. Chi, Appl. Phys. Lett. 2006, 88, 251110.
    (112) M. A. Baldo; S. Lamansky; P. E. Burrows; M. E. Thompson; S. R. Forrest, Appl. Phys. Lett., 1999, 75, 4.
    (113) H. Z. Xie; M. W. Liu; O. Y. Wang; X. H. Zhang; C. S. Lee; L. S. Hung; S. T. Lee; P. F. Teng; H. L. Kwong; H. Zheng; C. M. Che , Adv. Mater. 2001 , 13 , 1245.
    (114) S. Lamansky; P. Djurovich; D. Murphy; F. A. Razzaq; H. E. Lee; C. Adachi; P. E. Burrows; S. R. Forrest; M. E. Thompson, J. Am. Chem. Soc. 2001 , 123 , 4304.
    (115) C. Adachi; R. . Kwong; P. Djurovich; V. Adamovich; M. A. Baldo; M. E. Thompson; S. R. Forrest, Appl. Phys. Lett., 2001, 79, 2082.
    (116) (a) R. J. Holmes; B. W. D’Andrade; S. R. Forres; X. Ren; J. Li; M. E. Thompson, Appl. Phys. Lett., 2003, 83, 3818. (b) X. Ren; J. Li; R. J. Holmes; P. I. Djurovich; S. R. Forrest; M. E. Thompson, Chem. Mater., 2004, 16, 4743.
    (117) A. B. Tamayo; B. D. Alleyne; P. I. Djurovich; S. Lamansky; I. Tsyba; N. N. Ho; R. Bau; M. E. Thompson , J. Am. Chem. Soc. 2003 , 125 , 7377.
    (118) Adachi, C.; Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H., Nature 2012, 492, 234.
    (119) Nakanotani, H.; Masui, K.; Nishide, J.; Shibata, T.; Adachi, C. Sci. Rep., 2013, 3, 2127.
    (120) Nakagawa, T.; Ku, S.-Y.; Wong, K.-T.; Adachi, C. Chem. Commun., 2012, 48, 9580.
    (121) Lee, S. Y.; Yasuda, T.; Yang, Y. S.; Zhang, Q.; Adachi, C. Angew. Chem. Int. Ed., 2014, 53, 6402.
    (122) 陳金鑫;黃孝文,夢幻顯示器;OLED材料與元件,五南出版社,2007, p.26-p.28。
    (123) B. Chen; C.-S. Lee; S.-T. Lee; P. Webb; Y.-C. Chan; W. Gambling; H. Tian; W. Zhu, Jpn. J. Appl. Phys. Part 1, 2000, 39, 1190.
    (124) Bulovic, V.; Khalfin, V. B.; Gu, G.; Burrows, P. E.; Phys. Rev. B 1998, 58, 3730.
    (125) Chen, C.-T.; Chao, S.-D.; Yen, K.-C.; Chen, C.-H.; Chou, I.-C.; Hon, S.-W. J. Am. Chem. Soc. 1997, 119, 11341.
    (126) Chen, W. C.; Lee, Y. W.; Chen, C. T. Org. Lett. 2010, 12, 1472.
    (127) Chen, C.-T.; Lin, J.-S.; Moturu, V. R. K.; Lin, Y.-W.; Wei, Y.; Tao, Y.-T.; Chien, C.-H. Chem. Commun. 2005, 3980.
    (128) Chen, C.-T.; Wei, Y.; Lin, J.-S.; Moturu, V. R. K.; Chao, W.-S.; Tao, Y.-T.; Chien, C.-H. J. Am. Chem. Soc. 2006, 128, 10992.
    (129) Wei, Y.; Chen, C.-T. J. .Am. Chem. Soc. 2007, 129, 7478.
    (130) Chen, C.-T.; Chao, W.-S. Chao; Liu, H.-W. Liu; Wei, Y.; Jou, J.-H.; S. Kumar, RSC Adv., 2013, 3, 9381.
    (131) Y. Tao; Q. Wang; C. Yang; Q. Wang; Z. Zhang; T. Zou; J. Qin; D. Ma, Angew. Chem. Int. Ed. 2008, 47, 8104.
    (132) S. Gong; Y.-L. Chang; K. Wu; R. White; Z.-H. Lu; D. Song; C. Yang, Chem. Mater. 2014, 26, 1463.
    (133) Méhes, G.; Nomura, H.; Zhang, Q.; Nakagawa, T.; Adachi, C. Angew. Chem. Int. Ed., 2012, 51, 11311.
    (134) Nasu, K.; Nakagawa, T.; Nomura, H.; Lin, C.-J.; Cheng, C.-C.; Tseng, M.-R.; Yasuda, T.; Adachi, C. Chem. Commun., 2013, 49, 10385.
    (135) (a) Rumi, M.; Ehrlich, J. E.; Heikal, A. A.; Perry, J. W.; Barlow, S.; Hu, Z.; McCord-Maughon, D.; Parker, T. C.; Röckel, H.; Thayumanavan, S.; Marder, S. R.; Beljonne, D.; Brédas, J.-L. J. Am. Chem. Soc. 2000, 122, 9500. (b) Yang, J.-S.; Liau, K.-L.; Wang, C.-M.; Hwang, C.-Y. J. Am. Chem. Soc. 2004, 126, 12325.
    (136) (a) Hosokawa, C.; Higashi, H.; Nakamura, H.; Kusumoto, T. Appl. Phys. Lett. 1995, 67, 3853. (b) Woo, H.-S.; Cho, S.; Kwon, T.-W.; Park, D.-K. J. Korean Phys. Soc. 2005, 46, 981.
    (137) Juríček, M.; Kouwer, P. H. J.; Rehak, J.; Sly, J.; Rowan, A. E. J. Org. Chem. 2009, 74, 21.
    (138) Hunter, C. A.; Sanders, J. K. M. J. Am. Chem. Soc. 1990, 112, 5525.
    (139) S. W. Wen; M. T. Lee; C. H. Chen, Journal of Display Technology, 2005, 1, 90.
    (140) Hung, W. Y.; Tasi, T. C.; Ku, S.-Y.; Chi, L.-C.; Wong, K.-T. Phys. Chem. Chem. Phys., 2008, 10, 5822.
    (141) Generated by using Scigress molecular simulation package with ZINDO Configuration Interaction using INDO/S parameters after optimizing geometry by using DGauss with the B88-LYP GGA functional with the DZVP basis sets.
    (142) Wong, K.-T.; Ku, S.-Y.; Cheng, Y.-M.; Lin, X.-Y.; Hung, Y.-Y.; Pu, S.-C.; Chou, P.-T.; Lee, G.-H.; Peng, S.-M. J. Org. Chem. 2006, 71, 456.
    (143) Lin, H.-W.; Ku, S.-Y.; Su, H.-C.; Huang, C.-W.; Lin, Y.-T.; Wong, K.-T.; Wu, C.-C. Adv. Mater. 2005, 17, 2489.
    (144) (a) Miyaura, N.; Yamada, K.; Suzuki, A. Tetrahedron Lett. 1979, 36, 3437. (b) Miyaura, N.; Suzuki, A. Chem. Comm. 1979, 19, 866. (c) Miyaura, N.; Suzuki, A. Chem. Rev. 1979, 7, 2457.
    (145) Y. Nakajima; D. Yamashita; A. Endo; T. Oyamada; C. Adachi; M. Uda, Proceedings of IDW’04, Dec.8-10, 2004, 1391, Niigat, Japan.
    (146) Jones, G. II; Jackson, W. R.; Choi, C.-Y.; Bergmark, W. R. J. Phys. Chem. 1985, 89, 294.
    (147) Reynolds, G. A.; Drexhage, K. H. Optics Commun., 1975, 13, 222.
    (148) 蘇湋盛 (2014),順式二苯乙烯/芴螺旋體衍生之雙極型混成體於有機電激發光二極體和染料敏化太陽能電池材料之應用,國立清華大學化學系碩士論文。
    (149) Pavlishchuk, V.V.; Addison, A. W. Inorg. Chim. Acta, 2000, 298, 97.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE