研究生: |
陳以欣 Chen, Yi-Hsin |
---|---|
論文名稱: |
硒化鋅奈米顆粒包覆矽線陣列異質結構與銅氧化物之微結構的製備與應用研究 The Synthesis and Applications of Heterostructured ZnSe Nanoparticles/Si Wires Arrays and Cu-Oxide Microstructures |
指導教授: |
陳力俊
Chen, Lih-Jiann |
口試委員: |
鄭紹良
陳力俊 吳文偉 闕郁倫 葉炳宏 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 106 |
中文關鍵詞: | 矽線陣列 、硒化鋅奈米顆粒 、光電流 、光觸媒 、銅氧化物 、葡萄糖感測器 |
外文關鍵詞: | Si wires array, ZnSe Nanoparticles, Photocurrent, Photocatalyst, Cu-Oxide, Glucose Biosensor |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文包括:硒化鋅奈米顆粒包覆矽線陣列異質結構、銅氧化物之三維構造的製備,及其具有獨特的性質與應用之研究。在p型的矽基板上成長矽線陣列,並包覆硒化鋅的奈米顆粒;此異質結構呈現良好的光偵測及光催化表現。使用結合奈米球微影法及催化蝕刻法,得到規則一致的矽線陣列;硒化鋅以化學水浴法成長包覆於矽線陣列外層。以化學水浴法成長的硒化鋅奈米顆粒,此法具有不含鎘、簡單、快速、且包覆均勻的優點。在施加小電壓條件下,此方法得到的三維硒化鋅奈米顆粒包覆矽線陣列異質結構具有良好的光偵測表現,光電流反應的歸納於此元件具有高比表面積和快速的傳導途徑。三維硒化鋅奈米顆粒包覆矽線陣列異質結構亦於光催化活性上,降解甲基藍等染料之表現優異。
銅的氧化物一向備受矚目,本研究使用一個低溫簡單的方法,不需使用介面活性劑及模板,可由銅片上成長出三維藍色的氫氧化銅微米花簇後;藉由控制退火的溫度與升溫速度可得到黑色的二價氧化銅與暗紅色的一價氧化亞銅微米花簇。三維藍色的氫氧化銅微米花簇成長的條件與溫度及鹼性反應水溶液的濃度有關。氫氧化銅、氧化銅、氧化亞銅樣品的表面形貌、結構和熱分析,藉掃瞄式電子顯微鏡、原位加熱X光能量散射儀、穿透式電子顯微鏡、熱重分析儀分析。三維氧化銅微米花簇並用來偵測葡萄糖的濃度,具有快速的反應時間、高靈感度及適當的線性範圍。此良好表現歸納於三維氧化銅微米花簇結構以低溫濕式化學反應穩固成長微結構於銅基板上,而具有良好的傳導性。
Three dimensional material systems of heterostructured ZnSe nanoparticles/Si wires arrays and Cu-oxide micro flower clusters on Cu foil with unique properties and corresponding applications have been investigated.
P-type micron size silicon wire (SiW) arrays coated with ZnSe nanoparticles (NPs) exhibiting enhanced photodetection and photocatalytic performances were synthesized. The SiWs were grown by combining catalytic etching with nanosphere lithography methods. ZnSe NPs were coated on SiWs with a chemical bath deposition (CBD) method. The high photodetection performance of three-dimensional (3D) heterostructured ZnSe NPs/SiWs arrays with immediate decay (> 99.85%), on/off ratio (> 7 × 10 2) and photoresponse speed (< 0.4 s) were recorded under a small applied voltage (80 μV). The immediate decay and on/off ratio increase with decreasing applied voltage and the photocurrent variations of ZnSe NPs/SiWs were larger than 0.3 μA at 1 V. The enhanced UV photocurrent response is attributed to large surface-to-volume ratio and presence of the fast conductive pathway of ZnSe NPs/SiWs shell/core heterostructures. ZnSe NPs/SiWs also showed superb photocatalytic properties with methylene blue (MB) and acid fuchsin (AF) as reagents. The photodegradation data exhibited high activities of 88% and 83% after 120 and 110 min, respectively. The CBD of ZnSe NPs on SiWs provides a facile route for the fabrication of well aligned 3D heterostructured ZnSe NPs/SiWs arrays with a high on/off ratio photocurrent and photocatalytic activity.
Cu(OH)2, CuO, and Cu2O micro flower clusters on Cu foil were synthesized by a facile chemical method. Three dimensional self-assembled micro flower cluster structures were formed at a low temperature (5 °C) without utilizing surfactant and template. The growth of robust Cu(OH)2 micro flower clusters/Cu foil strongly depends on the growth temperature and alkaline concentration. The robust Cu(OH)2 micro flower clusters was transformed to CuO or Cu2O at a controlled temperature on Cu substrate. The morphologies, structures, and thermal properties of Cu(OH)2, CuO and Cu2O micro flower clusters were examined by scanning electron microscopy, in-situ X-ray energy dispersive spectrometer, transmission electron microscopy, and thermo-gravimetric analyzer/differential thermal analyzer. Cyclic voltammetry is demonstrated to be a good electrochemical technique for the non-enzymatic detection of glucose. The CuO micro flower clusters/Cu foil electrode presents a fast amperometric response time (1.5 s), high sensitivity (3.3 mA/mM) and appropriate linear range (0.25 μM to 1.0 mM) for glucose detection.
Chapter 1
1.1 R. P. Feynman, “There’s Plenty of Room at the Bottom,” Eng. Sci., 1960, 23, 22-36.
1.2 K. E. Drexler, “Engines of Creation: The Coming Era of Nanotechnology,” Doubleday, London, 1986.
1.3 M. C. Roco and W. S. Bainbridge, “Societal Implications of Nanoscience and Nanotechnology: Maximizing Human Benefit,” J. Nanopart. Res., 2005, 7, 1-13.
1.4 R. Kelsall, Nanoscale Science and Technology, John Wiley & Sons, Ltd., UK, 2005.
1.5 P. H. Yeh, Z. Li and Z. L. Wang, “Schottky-Gated Probe-Free ZnO Nanowire Biosensor,” Adv. Mater., 2009, 21, 4975-4978.
1.6 K. Q. Peng, X. Wang, X. L. Wu and S. T. Lee, “Platinum Nanoparticle Decorated Silicon Nanowires for Efficient Solar Energy Conversion,” Nano Lett., 2009, 9, 3704-3709.
1.7 C. H. Lai, M. Y. Lu and L. J. Chen, “Metal Sulfide Nanostructures: Synthesis, Properties and Applications in Energy Conversion and Storage,” J. Mater. Chem. 2012, 22, 19-30.
1.8 S. Kumar and T. Nann, “Shape Control of II-VI Semiconductor Nanomaterials,” Small, 2006, 2, 316-329.
1.9 H. Zhao, M. Chaker, N. Wu and D. Ma, “Towards Controlled Synthesis and Better Understanding of Highly Luminescent PbS/CdS Core/Shell Quantum Dots,” J. Mater. Chem., 2011, 21, 8898-8904.
1.10 S. K. Mehta, S. Kumar, S. Chaudhary and K. K. Bhasin, “Nucleation and Growth of Surfactant-Passivated CdS and HgS Nanoparticles: Time-Dependent Absorption and Luminescence Profiles,” Nanoscale, 2010, 2, 145-152.
1.11 H. L. Chou, C. H. Tseng, K. C. Pillai, B. J. Hwang and L. Y. Chen, “Adsorption and Binding of Capping Molecules for Highly Luminescent CdSe Nanocrystals – DFT Simulation Studies,” Nanoscale, 2010, 2, 2679-2684.
1.12 X. S. Fang, T. Zhai, U. K. Gautam, L. Li, L. Wu, Y. Bando and D. Golberg, “ZnS Nanostructures: From Synthesis to Applications,” Prog. Mater. Sci., 2011, 56, 175-287.
1.13 J. S. Hu, L. L. Ren, Y. G. Guo, H. P. Liang, A. M. Cao, L. J. Wan and C. L. Bai, “Mass Production and High Photocatalytic Activity of ZnS Nanoporous Nanoparticles,” Angew. Chem. Int. Ed., 2005, 44, 1269-1273.
1.14 A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno and P. V. Kamat, “Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe-TiO2 Architecture,” J. AM. CHEM. SOC., 2008, 130, 4007-4015.
1.15 Y. Tachibana, H. Y. Akiyama, Y. Ohtsuka, T. Torimoto and S. Kuwabata, “CdS Quantum Dots Sensitized TiO2 Sandwich Type Photoelectrochemical Solar Cells,” Chem. Lett., 2007, 36, 88-89.
1.16 S. Hotchandani and P. V. Kamat, “Charge-Transfer Processes in Coupled Semiconductor Systems. Photochemistry and Photoelectrochemistry of the Colloidal Cadmium Sulfide-Zinc Oxide System,” J. Phys. Chem. 1992, 96, 6834-6839.
1.17 R. T. Ross and A. J. Nozik, “Efficiency of Hotcarrier Solar Energy Converters,” J. Appl. Phys., 1982, 53, 3813-3818.
1.18 R. D. Schaller and V. I. Klimov, “Size Dependence of the Multiple Exciton Generation Rate in CdSe Quantum Dot,” Phys. Rev. Lett., 2004, 92, 186601-4.
1.19 R. D. Schaller, V. M. Agranovich and V. C. Klimov, “High-Efficiency Carrier Multiplication Through Direct Photogeneration of Multi-Excitons via Virtual Single-Exciton States,” Nature Physics, 2005, 1, 189-194.
1.20 M. Califano, A. Zunger and A. Franceschetti, “Efficient Inverse Auger Recombination at Threshold in CdSe Nanocrystals,” Nano Lett., 2004, 4, 525-531.
1.21 S. Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, 1991, 354, 56-58.
1.22 W.-T. Sun, Y. Yu, H.-Y. Pan, X.-F. Gao, Q. Chen and L.-M. Peng, “CdS Quantum Dots Sensitized TiO2 Nanotube-Array Photoelectrodes,” J. AM. CHEM. SOC., 2008, 130, 1124-1125.
1.23 M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. Yang, “Nanowire Dye-Sensitized Solar Cells,” Nature Mater., 2005, 4, 455-459.
1.24 G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes, “Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells,” Nano Lett., 2006, 6, 215-218.
1.25 A. B. F. Martinson, J. W. Elam, J. T. Hupp and M. J. Pellin, “ZnO Nanotube Based Dye-Sensitized Solar Cells,” Nano Lett., 2007, 7, 2183-2187.
1.26 G. Zhu, R. S. Yang, S. H. Wang and Z. L. Wang, “Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array,” Nano Lett., 2010, 10, 3151-3155.
1.27 Y. F. Hu, Y. Zhang, C. Xu, G. Zhu and Z. L. Wang, “High-Output Nanogenerator by Rational Unipolar Assembly of Conical Nanowires and Its Application for Driving a Small Liquid Crystal Display,” Nano Lett., 2010, 10, 5025-5031.
1.28 Y. Zhang, Y. Liu and Z. L. Wang, “Fundamental Theory of Piezotronics,” Adv. Mater., 2011, 23, 3004-30013.
1.29 S. N. Sarangi, K. Goswami and S. N. Sahu, “Biomolecular Recognition in DNA Tagged CdSe Nanowires,” Biosens. Bioelectron., 2007, 22, 3086-3091.
1.30 J. N. Tiwari, R. N. Tiwari and K. S. Kim, “Zero-dimensional, One-dimensional, Two-dimensional and Three-dimensional Nanostructured Materials for Advanced Electrochemical Energy Devices,” Prog. Mat. Sci., 2012, 57, 724-803.
1.31 D. Kong, W. Dang, J. J. Cha, H. Li, S. Meister, H. Peng, Z. Liu and Y. Cui, “Few-Layer Nanoplates of Bi2Se3 and Bi2Te3 with Highly Tunable Chemical Potential,” Nano Lett., 2010, 10, 2245-2250.
1.32 J. M. Soon and K. P. Loh, “Electrochemical Double-Layer Capacitance of MoS2 Nanowall Films,” Electrochem. Solid-State Lett., 2007, 10, A250-A254.
1.33 C. Ye, Y. Bando, G. Shen and D. Golberg, “Thickness-Dependent Photocatalytic Performance of ZnO Nanoplatelets,” J. Phys. Chem. B, 2006, 110, 15146-15151.
1.34 A. K. Geim and K. S. Novoselov, “The Rise of Graphene,” Nat. Mat., 2007, 6, 183-191.
1.35 I. K. Ghada, L. Larissa, S. Harnik, H. M. Stefan, H. Sean, G. Andras, A. Pattantyus and E. H. Sargent, “Efficient, Stable Infrared Photovoltaics Based on Solution-Cast Colloidal Quantum Dots,” ACS Nano, 2008, 2, 833-840.
1.36 K. S. Leschkies, R. Divakar, J. Basu, E. E. Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris and E. S. Aydil, “Photosensitization of ZnO Nanowires with CdSe Quantum Dots for Photovoltaic Devices,” Nano Lett., 2007, 7, 1793-1798.
1.37 K. K. Manga, J. Wang, M. Lin, J. Zhang, M. Nesladek, V. Nalla, W. Ji and K. P. Loh, “High-Performance Broadband Photodetector Using Solution-Processible PbSe–TiO2 –Graphene Hybrids,” Adv. Mater., 2012, 24, 1697-1702.
1.38 A. I. Hochbaum and P. D. Yang, “Semiconductor Nanowires for Energy Conversion,” Chem. Rev., 2010, 110, 527-546.
1.39 K. Q. Peng and S. T. Lee, “Silicon Nanowires for Photovoltaic Solar Energy Conversion,” Adv. Mater., 2011, 23, 198-215.
1.40 D. R. Kim, C. H. Lee, P. M. Rao, I. S. Cho and X. L. Zheng, “Hybrid Si Microwire and Planar Solar Cells: Passivation and Characterization,” Nano Lett., 2011, 11, 2704-2708.
1.41 Y. He, C. H. Fan and S. T. Lee, “Silicon Nanostructures for Bioapplication,” Nano Today, 2010, 5, 282-295.
1.42 B. H. Zhang, H. S. Wang, L. H. Lu, K. L. Ai, G. Zhang and X. L. Cheng, “Large-Area Silver-Coated Silicon Nanowire Arrays for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy,” Adv. Funct. Mater., 2008, 18, 2348-2355.
1.43 X. T. Wang, W. S. Shi, G. W. She, L. X. Mu and S. T. Lee, “High-performance Surface-Enhanced Raman Scattering Sensors Based on Ag Nanoparticles-Coated Si Nanowire Arrays for Quantitative Detection of Pesticides,” Appl. Phys. Lett., 2010, 96, 053104-3.
1.44 J. S. Jie, W. J. Zhang, I. Bello, C. S. Lee and S. T. Lee, “One-Dimensional II—VI Nanostructures: Synthesis, Properties and Optoelectronic Applications,” Nano Today, 2010, 5, 313-336.
1.45 a) Y. P. Hsieh, H. Y. Chen, M. Z. Lin, S. C. Shiu, M. Hofmann, M. Y. Chern, X. T. Jia, Y. J. Yang, H. J. Chang, H. M. Huang, S. C. Tseng, L. C. Chen, K. H. Chen, C. F. Lin, C. T. Liang and Y. F. Chen, “Electroluminescence from ZnO/Si-Nanotips Light-Emitting Diodes,” Nano Lett., 2009, 9, 1839-1843. b) M. Afsal, C. Y. Wang, L. W. Chu, H. Ouyang and L. J. Chen, “Highly Sensitive Metal–Insulator–Semiconductor UV Photodetectors Based on ZnO/SiO2 Core–Shell Nanowires,” J. Mater. Chem., 2012, 22, 8420-8425.
1.46 M. Y. Lu, J. H. Song, M. P. Lu, C. Y. Lee, L. J. Chen and Z. L. Wang, “ZnO#ZnS Heterojunction and ZnS Nanowire Arrays for Electricity Generation,” ACS Nano, 2009, 3, 357-362.
1.47 a) L. Mandal, M. Deo, A. Yengantiwar, A. Banpurkar, J. Jog and S. Ogale, “A Quasi-Liquid Iontronic–Electronic Light-Harvesting Hybrid Photodetector with Giant Response,” Adv. Mater., 2012, 24, 3686-3691. b) S. Yang, J. Gong and Y. Deng, “A Sandwich-Structured Ultraviolet Photodetector Driven Only by Opposite Heterojunctions,” J. Mater. Chem., 2012, 22, 13899-13902.
1.48 a) A. Manekkathodi, M. Y. Lu, C. W. Wang and L. J. Chen, “Direct Growth of Aligned Zinc Oxide Nanorods on Paper Substrates for Low-Cost Flexible Electronics,” Adv. Mater., 2010, 22, 4059-4063. b) Y. C. Chang, W. C. Yang, C. M. Chang, P. C. Hsu and L. J. Chen, “Controlled Growth of ZnO Nanopagoda Arrays with Varied Lamination and Apex Angles,” Cryst. Growth Des., 2009, 9, 3161-3167.
1.49 X. F. Wang, Y. Zhou, J. J. Xu and H. Y. Chen, “Signal-On Electrochemiluminescence Biosensors Based on CdS–Carbon Nanotube Nanocomposite for the Sensitive Detection of Choline and Acetylcholine,” Adv. Funct. Mater., 2009, 19, 1444-1450.
1.50 M. Y. Lu, M. P. Lu, Y. A. Chung, M. J. Chen, Z. L. Wang and L. J. Chen, “Intercrossed Sheet-Like Ga-Doped ZnS Nanostructures with Superb Photocatalytic Activity and Photoresponse,” J. Phys. Chem. C., 2009, 113, 12878-12882.
1.51 X. S. Fang, Y. Bando, M. Y. Liao, U. K. Gautam, C. Y. Zhi, B. Dierre, B. D. Liu, T. Y. Zhai, T. Sekiguchi, Y. Koide and D. Golberg, “Single-Crystalline ZnS Nanobelts as Ultraviolet-Light Sensors,” Adv. Mater., 2009, 21, 2034-2039.
1.52 a) X. S. Fang, Y. Bando, M. Y. Liao, T. Y. Zhai, U. K. Gautam, L. Li, Y. Koide and D. Golberg, “An Efficient Way to Assemble ZnS Nanobelts as Ultraviolet-Light Sensors with Enhanced Photocurrent and Stability,” Adv. Funct. Mater., 2010, 20, 500-508. b) X. S. Fang, T. Zhai, U. K. Gautam, L. Li, L. Wu, Y. Bando and D. Golberg, “ZnS Nanostructures: From Synthesis to Applications,” Prog. Mater. Sci., 2011, 56, 175-287. c) X. S. Fang, L. Wu and L. Hu, “ZnS Nanostructure Arrays: A Developing Material Star,” Adv. Mater., 2011, 23, 585-598. d) L. Hu, J. Yan, M. Liao, H. Xiang, X. Gong, L. Zhang and X. Fang, “An Optimized Ultraviolet-A Light Photodetector with Wide-Range Photoresponse Based on ZnS/ZnO Biaxial Nanobelt,” Adv. Mater., 2012, 24, 2305-2309.
1.53 C. D. Lokhande, P. S. Patil, H. Tributsch and A. Ennaoui, “ZnSe Thin Films by Chemical Bath Deposition Method,” Solar Energy Materials & Solar Cells., 1998, 55, 379-393.
1.54 J. M. Doña and J. Herrero, “Chemical-Bath Deposition of ZnSe Thin Films,” J. Electrochem. Soc., 1995, 142, 764-770.
1.55 X. S. Fang, S. L. Xiong, T. Y. Zhai, Y. Bando, M. Y. Liao, U. K. Gautam, Y. Koide, X. G. Zhang, Y. T. Qian and D. Golberg, “High-Performance Blue/Ultraviolet-Light-Sensitive ZnSe-Nanobelt Photodetectors,” Adv. Mater., 2009, 21, 5016-5021.
1.56 M. A. Hasse, J. Qui, J. DePuydt and H. Cheng, “Blue-Green Laser Diodes,” Appl. Phys. Lett. 1991, 59, 1272-1274.
1.57 B. M. Kayes, M. A. Filler, M. C. Putnam, M. D. Kelzenberg, N. S. Lewis and H. A. Atwater, “Growth of Vertically Aligned Si Wire Arrays Over Large Areas (>1 cm2) With Au and Cu Catalysts,” Appl. Phys. Lett. 2007, 91, 103110-3.
1.58 A. M. Morales and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science 1998, 279, 208-211.
1.59 F. C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello and S. T. Lee, “Electron Field Emission from Silicon Nanowires,” Appl. Phys. Lett. 1999, 75, 1700-1702.
1.60 Z. P. Huang, H. Fang and J. Zhu, “Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density,” Adv. Mater., 2007, 19, 744-748.
1.61 X. Jiang, T. Herricks and Y. Xia, “CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air,” Nano Lett., 2002, 2, 1333-1338.
1.62 P. E. de Jongh, D. Vanmaekelbergh and J. J. Kelly, “Cu2O: Electrodeposition and Characterization,” Chem. Mater., 1999, 11, 3512-3517.
1.63 Y. W. Zhu, T. Yu, F. C. Cheong, X. J. Xu, C. T. Lim, V. B. C. Tan, J. T. L. Thong and C. H. Sow, “Large-scale Synthesis and Field Emission Properties of Vertically Oriented CuO Nanowire Films,” Nanotechnology, 2005, 16, 88-92.
1.64 Y. Feng and X. Zheng, “Plasma-Enhanced Catalytic CuO Nanowires for CO Oxidation,” Nano Lett., 2010, 10, 4762-4766.
1.65 X. P. Gao, J. L. Bao, G. L. Pan, H. Y. Zhu, P. X. Huang, F. Wu and D. Y. Song, “Preparation and Electrochemical Performance of Polycrystalline and Single Crystalline CuO Nanorods as Anode Materials for Li Ion Battery,” J. Phys. Chem. B, 2004, 108, 5547-5551.
1.66 X. Zhao, P. Wang and B. Li, “CuO/ZnO Core/Shell Heterostructure Nanowire Arrays: Synthesis, Optical Property, and Energy Application,” Chem. Commun., 2010, 46, 6768-6770.
1.67 J. Li, F. Sun, K. Gu, T. Wu, W. Zhai, W. Li and S. Huang, “Preparation of Spindly CuO Micro-Particles for Photodegradation of Dye Pollutants Under a Halogen Tungsten Lamp,” Appl. Catal. A: Gen., 2011, 406, 51-58.
1.68 J. Zhang, J. Liu, Q. Peng, X. Wang and Y. Li, “Nearly Monodisperse Cu2O and CuO Nanospheres: Preparation and Applications for Sensitive Gas Sensors,” Chem. Mater., 2006, 18, 867-871.
1.69 X. L. Deng, S. Hong, I. Hwang, J.-S. Kim, J. H. Jeon, Y. C. Park, J. Lee, S.-O. Kang, T. Kawai and B. H. Park, “Confining Grains of Textured Cu2O Films to Single-Crystal Nanowires and Resultant Change in Resistive Switching Characteristics,” Nanoscale, 2012, 4, 2029-2033.
1.70 P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J-M. Tarascon. “Nano-Sizedtransition-Metaloxidesas Negative-Electrode Materials for Lithium-Ion Batteries,” Nature, 2000, 407, 496-499.
1.71 J. C. Park, J. Kim, H. Kwon and H. Song, “Gram-Scale Synthesis of Cu2O Nanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium-Ion Battery Anode Materials,” Adv. Mater., 2009, 21, 803-807.
1.72 S. K. Yip and J. A. Sauls, “Nonlinear Meissner Effect in CuO Superconductors,” Phys. Rev. Lett., 1992, 69, 2264-2267.
1.73 M. A.G. Aranda, “Crystal Structures of Copper-Based High-Tc Superconductors,” Adv. Mater. 1994, 6, 905-921.
1.74 J. Ziolo, F. Borsa, M. Corti and A. Aigamonti, “Cu Nuclear Quadrupole Resonance and Magnetic Phase Transition in CuO,” J. Appl. Phys., 1990, 67, 5864-5866.
1.75 S. Cherevko and C.-H. Chung, “The Porous CuO Electrode Fabricated by Hydrogen Bubble Evolution and its Application to Highly Sensitive Non-Enzymatic Glucose Detection,” Talanta, 2010, 80, 1371-1377.
1.76 Z. Zhuang, X. Su, H. Yuan, Q. Sun, D. Xiao, M. M. F. Choi, “An Improved Sensitivity Non-Enzymatic Glucose Sensor Based on a CuO Nanowire Modified Cu Electrode,” Analyst, 2008, 133, 126-132.
1.77 M. Yang, F. Qu, Y. Lu, Y. He, G. Shen and R. Yu, “Platinum Nanowire Nanoelectrode Array for the Fabrication of Biosensors,” Biomaterials, 2006, 27, 5944-5950.
1.78 Y. Mu, D. Jia, Y. He, Y. Miao and H.-L. Wu, “Nano Nickel Oxide Modified Non-Enzymatic Glucose Sensors with Enhanced Sensitivity Through an Electrochemical Process Strategy at High Potential,” Biosens. Bioelectron., 2011, 26, 2948-2952.
1.79 X. Wang, Y. Zhang, C. E. Banks, Q. Chen and X. Ji, “Non-Enzymatic Amperometric Glucose Biosensor Based on Nickel Hexacyanoferrate Nanoparticle Film Modified Electrodes,” Colloids Surf. B, 2010, 78, 363-366.
1.80 T. Soejima, H. Yagyu, N. Kimizuka and S. Ito, “One-Pot Alkaline Vapor Oxidation Synthesis and Electrocatalytic Activity Towards Glucose Oxidation of CuO Nanobelt Arrays,” RSC. Adv., 2011, 1, 187-190.
1.81 L.-Q. Rong, C. Yang, Q.-Y. Qian and X.-H. Xia, “Study of the Nonenzymatic Glucose Sensor Based on Highly Dispersed Pt Nanoparticles Supported on Carbon Nanotubes,” Talanta, 2007, 72, 819-824.
Chapter 2
2.1 K. Y. Lai, Y. R. Lin, H. P. Wang and J. H. He, “Synthesis of Anti-Reflective and Hydrophobic Si Nanorod Arrays by Colloidal Lithography and Reactive Ion Etching,” CrystEngComm, 2011, 13, 1014-1017.
2.2 Z. P. Huang, H. Fang and J. Zhu, “Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density,” Adv. Mater., 2007, 19, 744-748.
2.3 K. Q. Peng and S. T. Lee, “Silicon Nanowires for Photovoltaic Solar Energy Conversion,” Adv. Mater., 2011, 23, 198-215.
2.4 C. Y. Liu, W. S. Li, L. W. Chu, M. Y. Lu, C. J. Tsai and L. J. Chen, “An Ordered Si Nanowire with NiSi2 Tip Arrays as Excellent Field Emitters,” Nanotechnology, 2011, 22, 055603.
2.5 Z. P. Huang , N. Geyer , P. Werner , J. de Boor and U. Gösele, “Metal-Assisted Chemical Etching of Silicon: A Review,” Adv. Mater., 2011, 23, 285-308.
2.6 L. Li, T. Y. Zhai, H. B. Zeng, X.S. Fang, Y. Bando and D. Golberg, “Polystyrene Sphere-Assisted One-Dimensional Nanostructure Arrays: Synthesis and Applications,” J. Mater. Chem., 2011, 21, 40-56.
2.7 C. D. Lokhande, P. S. Patil, H. Tributsch and A. Ennaoui, “ZnSe Thin Films by Chemical Bath Deposition Method,” Solar Energy Materials & Solar Cells., 1998, 55, 379-393.
2.8 R. Kelsall, Nanoscale Science and Technology, John Wiley & Sons, Ltd., UK, 2005.
Chapter 4
4.1 a) K. S. Leschkies, R. Divakar, J. Basu, E. E. Pommer, J. E. Boercker, C. B. Carter, U. R. Kortshagen, D. J. Norris and E. S. Aydil, “Photosensitization of ZnO Nanowires with CdSe Quantum Dots for Photovoltaic Devices,” Nano Lett., 2007, 7, 1793-1798. b) A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno and P. V. Kamat, “Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe-TiO2 Architecture,” J. AM. CHEM. SOC., 2008, 130, 4007-4015.
4.2 K. K. Manga, J. Wang, M. Lin, J. Zhang, M. Nesladek, V. Nalla, W. Ji and K. P. Loh, “High-Performance Broadband Photodetector Using Solution-Processible PbSe–TiO2–Graphene Hybrids,” Adv. Mater., 2012, 24, 1697-1702.
4.3 A. I. Hochbaum and P. D. Yang, “Semiconductor Nanowires for Energy Conversion,” Chem. Rev., 2010, 110, 527-546.
4.4 K. Q. Peng, X. Wang, X. L. Wu and S. T. Lee, “Platinum Nanoparticle Decorated Silicon Nanowires for Efficient Solar Energy Conversion,” Nano Lett., 2009, 9, 3704-3709.
4.5 K. Q. Peng and S. T. Lee, “Silicon Nanowires for Photovoltaic Solar Energy Conversion,” Adv. Mater., 2011, 23, 198-215.
4.6 D. R. Kim, C. H. Lee, P. M. Rao, I. S. Cho and X. L. Zheng, “Hybrid Si Microwire and Planar Solar Cells: Passivation and Characterization,” Nano Lett., 2011, 11, 2704-2708.
4.7 Y. He, C. H. Fan and S. T. Lee, “Silicon Nanostructures for Bioapplications,” Nano Today, 2010, 5, 282-295.
4.8 B. H. Zhang, H. S. Wang, L. H. Lu, K. L. Ai, G. Zhang and X. L. Cheng, “Large-Area Silver-Coated Silicon Nanowire Arrays for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy,” Adv. Funct. Mater., 2008, 18, 2348-2355.
4.9 X. T. Wang, W. S. Shi, G. W. She, L. X. Mu and S. T. Lee, “High-Performance Surface-Enhanced Raman Scattering Sensors Based on Ag Nanoparticles-Coated Si Nanowire Arrays for Quantitative Detection of Pesticides,” Appl. Phys. Lett., 2010, 96, 053104-3.
4.10 C. D. Lokhande, P. S. Patil, H. Tributsch and A. Ennaoui, “ZnSe Thin Films by Chemical Bath Deposition Method,” Solar Energy Materials & Solar Cells., 1998, 55, 379-393.
4.11 J. M. Doña and J. Herrero, “Chemical-Bath Deposition of ZnSe Thin Films,” J. Electrochem. Soc., 1995, 142, 764-770.
4.12 X. S. Fang, S. L. Xiong, T. Y. Zhai, Y. Bando, M. Y. Liao, U. K. Gautam, Y. Koide, X. G. Zhang, Y. T. Qian and D. Golberg, “High-Performance Blue/Ultraviolet-Light-Sensitive ZnSe- Nanobelt Photodetectors,” Adv. Mater., 2009, 21, 5016-5021.
4.13 M. A. Hasse, J. Qui, J. DePuydt and H. Cheng, “Blue-Green Laser Diodes,” Appl. Phys. Lett. 1991, 59, 1272-1274.
4.14 C. H. Hsiao, S. J. Chang, S. B. Wang, S. P. Chang, T. C. Li, W. J. Lin, C. H. Ko, T. M. Kuan and B. R. Huang, “ZnSe Nanowire Photodetector Prepared on Oxidized Silicon Substrate by Molecular-Beam Epitaxy,” J. Electrochem. Soc., 2009, 156, J73-J76.
4.15 X. Fan, X. M. Meng, X. H. Zhang, M. L. Zhang, J. S. Jie, W. J. Zhang, C. S. Lee and S. T. Lee, “Formation and Photoelectric Properties of Periodically Twinned ZnSe/SiO2 Nanocables,” J. Phys. Chem. C., 2009, 113, 834-838.
4.16 K. Y. Lai, Y. R. Lin, H. P. Wang and J. H. He, “Synthesis of Anti-Reflective and Hydrophobic Si Nanorod Arrays by Colloidal Lithography and Reactive Ion Etching,” CrystEngComm, 2011, 13, 1014-1017.
4.17 Z. P. Huang, H. Fang and J. Zhu, “Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density,” Adv. Mater., 2007, 19, 744-748.
4.18 C. Y. Liu, W. S. Li, L. W. Chu, M. Y. Lu, C. J. Tsai and L. J. Chen, “An Ordered Si Nanowire with NiSi2 Tip Arrays as Excellent Field Emitters,” Nanotechnology, 2011, 22, 055603.
4.19 Z. P. Huang , N. Geyer , P. Werner , J. de Boor and U. Gösele, “Metal-Assisted Chemical Etching of Silicon: A Review,” Adv. Mater., 2011, 23, 285-308.
4.20 L. Li, T. Y. Zhai, H. B. Zeng, X.S. Fang, Y. Bando and D. Golberg, “Polystyrene Sphere-Assisted One-Dimensional Nanostructure Arrays: Synthesis and Applications,” J. Mater. Chem., 2011, 21, 40-56.
4.21 B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Pub. Co., U. S., 1956.
4.22 Y. F. Hu, J. Zhou, P. H. Yeh, Z. Li, T. Y. Wei and Z. L. Wang, “Supersensitive, Fast-Response Nanowire Sensors by Using Schottky Contacts,” Adv. Mater., 2010, 22, 3327-3332.
4.23 M. Y. Lu, M. P. Lu, Y. A. Chung, M. J. Chen, Z. L. Wang and L. J. Chen, “Intercrossed Sheet-Like Ga-Doped ZnS Nanostructures with Superb Photocatalytic Activity and Photoresponse,” J. Phys. Chem. C., 2009, 113, 12878-12882.
4.24 C. L. Hsu, S. J. Chang, Y. R. Lin, P. C. Li, T. S. Lin, S. Y. Tsai, T. H. Lu and I. C. Chen, “Ultraviolet Photodetectors with Low Temperature Synthesized Vertical ZnO Nanowires,” Chem. Phys. Lett., 2005, 416, 75-78.
4.25 H. Kind, H. Yan, B. Messer, M. Law, and P. D. Yang, “Nanowire Ultraviolet Photodetectors and Optical Switches,” Adv. Mater., 2002, 14, 158-160.
Chapter 5
5.1 F. Huang, L. Chen, H. Wang and Z. Yan, “Analysis of the Degradation Mechanism of Methylene Blue by Atmospheric Pressure Dielectric Barrier Discharge Plasma,” Chem. Eng. J., 2010, 162, 250-256.
5.2 L. Zhang, X. Y. Zhou, X. J. Guo, X. Y. Song and X. Y. Liu, “Investigation on the Degradation of Acid Fuchsin Induced Oxidation by MgFe2O4 Under Microwave Irradiation,” J. Mol. Catal. A: Chem., 2011, 335, 31-37.
5.3 Y. A. Chung, Y. C. Chang, M. Y. Lu, C. Y. Wang and L. J. Chen, “Synthesis and Photocatalytic Activity of Small-Diameter ZnO Nanorods,” J. Electrochem. Soc., 2009, 156, F75-F79.
5.4 H. Cao, Y. Xiao and S. Zhang, “The Synthesis and Photocatalytic Activity of ZnSe Microspheres,” Nanotechnology, 2011, 22, 015604.
5.5 V. Taghvaei, A. H. Yangjeh and M. Behboudnia, “Hydrothermal and Template-Free Preparation and Characterization of Nanocrystalline ZnS in Presence of a Low-Cost Ionic Liquid and Photocatalytic Activity,” Physica E, 2010, 42, 1973-1978.
5.6 J. Z. Kong, A. D. Li, X. Y. Li, H. F. Zhai, W. Q. Zhang, Y. P. Gong, H. Li and D. Wu, “Photo-Degradation of Methylene Blue using Ta-Doped ZnO Nanoparticle,” J. Solid State Chem., 2010, 183, 1359-1364.
5.7 Y. C. Chen, C. H. Wang, H. Y. Lin, B. H. Li, W. T. Chen and C. P. Liu, “Growth of Ga-doped ZnS Nanowires Constructed by Self-Assembled Hexagonal Platelets with Excellent Photocatalytic Properties,” Nanotechnology, 2010, 21, 455604.
5.8 P. Chen, H. W. Liang, X. H. Lv, H. Z. Zhu, H. B. Yao and S. H. Yu, “Carbonaceous Nanofiber Membrane Functionalized by Beta-Cyclodextrins for Molecular Filtration,” ACS Nano, 2011, 5, 5928-5935.
Chapter 6
6.1 X. Jiang, T. Herricks and Y. Xia, “CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air,” Nano Lett., 2002, 2, 1333-1338.
6.2 P. E. de Jongh, D. Vanmaekelbergh and J. J. Kelly, “Cu2O: Electrodeposition and Characterization,” Chem. Mater., 1999, 11, 3512-3517.
6.3 Y. W. Zhu, T. Yu, F. C. Cheong, X. J. Xu, C. T. Lim, V. B. C. Tan, J. T. L. Thong and C. H. Sow, “Large-scale Synthesis and Field Emission Properties of Vertically Oriented CuO Nanowire Films,” Nanotechnology, 2005, 16, 88-92.
6.4 Y. Feng and X. Zheng, “Plasma-Enhanced Catalytic CuO Nanowires for CO Oxidation,” Nano Lett., 2010, 10, 4762-4766.
6.5 X. P. Gao, J. L. Bao, G. L. Pan, H. Y. Zhu, P. X. Huang, F. Wu and D. Y. Song, “Preparation and Electrochemical Performance of Polycrystalline and Single Crystalline CuO Nanorods as Anode Materials for Li Ion Battery,” J. Phys. Chem. B, 2004, 108, 5547-5551.
6.6 X. Zhao, P. Wang and B. Li, “CuO/ZnO Core/Shell Heterostructure Nanowire Arrays: Synthesis, Optical Property, and Energy Application,” Chem. Commun., 2010, 46, 6768-6770.
6.7 J. Li, F. Sun, K. Gu, T. Wu, W. Zhai, W. Li and S. Huang, “Preparation of Spindly CuO Micro-Particles for Photodegradation of Dye Pollutants Under a Halogen Tungsten Lamp,” Appl. Catal. A: Gen., 2011, 406, 51-58.
6.8 J. Zhang, J. Liu, Q. Peng, X. Wang and Y. Li, “Nearly Monodisperse Cu2O and CuO Nanospheres: Preparation and Applications for Sensitive Gas Sensors,” Chem. Mater., 2006, 18, 867-871.
6.9 X. L. Deng, S. Hong, I. Hwang, J.-S. Kim, J. H. Jeon, Y. C. Park, J. Lee, S.-O. Kang, T. Kawai and B. H. Park, “Confining Grains of Textured Cu2O Films to Single-Crystal Nanowires and Resultant Change in Resistive Switching Characteristics,” Nanoscale, 2012, 4, 2029-2033.
6.10 P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J-M. Tarascon. “Nano-Sizedtransition-Metaloxidesas Negative-Electrode Materials for Lithium-Ion Batteries,” Nature, 2000, 407, 496-499.
6.11 J. C. Park, J. Kim, H. Kwon and H. Song, “Gram-Scale Synthesis of Cu2O Nanocubes and Subsequent Oxidation to CuO Hollow Nanostructures for Lithium-Ion Battery Anode Materials,” Adv. Mater., 2009, 21, 803-807.
6.12 S. K. Yip and J. A. Sauls, “Nonlinear Meissner Effect in CuO Superconductors,” Phys. Rev. Lett., 1992, 69, 2264-2267.
6.13 M. A.G. Aranda, “Crystal Structures of Copper-Based High-Tc Superconductors,” Adv. Mater. 1994, 6, 905-921.
6.14 J. Ziolo, F. Borsa, M. Corti and A. Aigamonti, “Cu Nuclear Quadrupole Resonance and Magnetic Phase Transition in CuO,” J. Appl. Phys., 1990, 67, 5864-5866.
6.15 B. Liu and H. C. Zeng, “Mesoscale Organization of CuO Nanoribbons: Formation of “Dandelions”,” J. Am. Chem. Soc., 2004, 126, 8124-8125.
6.16 H. Yu, J. Yu, S. Liu and S. Mann, “Template-free Hydrothermal Synthesis of CuO/Cu2O Composite Hollow Microspheres,” Chem. Mater., 2007, 19,4327-4334.
6.17 Y. Chang and H. C. Zeng, “Controlled Synthesis and Self-Assembly of Single-Crystalline CuO Nanorods and Nanoribbons,” Cryst. Growth Des., 2004, 4, 397-402.
6.18 C.-H. Kuo, C.-H. Chen and M. H. Huang, “Seed-Mediated Synthesis of Monodispersed Cu2O Nanocubes with Five Different Size Ranges from 40 to 420 nm,” Adv. Funct. Mater., 2007, 17, 3773-3780.
6.19 H. Hou, Y. Xie and Q. Li, “Large-Scale Synthesis of Single-Crystalline Quasi-Aligned Submicrometer CuO Ribbons,” Cryst. Growth Des., 2005, 1, 201-205.
6.20 Y. Liu, Y. Chu, Y. Zhuo, M. Li, L. Li and L. Dong, “Anion-Controlled Construction of CuO Honeycombs and Flowerlike Assemblies on Copper Foils,” Cryst. Growth Des., 2007, 7, 467-470.
6.21 Y. Zhou, S. Kamiya, H. Minamikawa and T. Shimizu, “Aligned Nanocables: Controlled Sheathing of CuO Nanowires by a Self-Assembled Tubular Glycolipid,” Adv. Mater., 2007, 19, 4194-4197.
6.22 S. Anandan, X, Wen and S. Yang, “Room Temperature Growth of CuO Nanorod Arrays on Copper and Their Application as a Cathode in Dye-Sensitized Solar Cells,” Mater. Chem. Phys., 2005, 93, 35-40.
6.23 X. Wen, W. Zhang and S. Yang, “Synthesis of Cu(OH)2 and CuO Nanoribbon Arrays on a Copper Surface,” Langmuir, 2003, 19, 5898-5903.
6.24 J. Pike, S.-W. Chan, F. Zhang, X. Wang and J. Hanson, “Formation of Stable Cu2O from Reduction of CuO Nanoparticles,” Appl. Catal. A, 2006, 303, 273-277.
6.25 X. Wen, Y. Xie, C. L. Choi, K. C. Wan, X.-Y. Li and S. Yang, “Copper-Based Nanowire Materials: Templated Syntheses, Characterizations, and Applications,” Langmuir, 2005, 21, 4729-4737.
6.26 W. Wang, O. K. Varghese, C. Ruan, M. Paulose and C. A. Grimes, “Synthesis of CuO and Cu2O Crystalline Nanowires Using Cu(OH)2 Nanowire Templates,” J. Mater. Res., 2003, 18, 2756-2759.
6.27 S. Jana, S. Das, N. S. Das and K. K. Chattopadhyay, “CuO Nanostructures on Copper Foil by a Simple Wet Chemical Route at Room Temperature,” Mater. Res. Bull., 2010, 45, 693-698.
6.28 C. Lu, L. Qi, J. Yang, D. Zhang, N. Wu and J. Ma, “Simple Template-Free Solution Route for the Controlled Synthesis of Cu(OH)2 and CuO Nanostructures,” J. Phys. Chem. B, 2004, 108, 17825-17831.
Chapter 7
7.1 D. Lu, J. Cardiel, G. Cao and A. Q. Shen, “Nanoporous Scaffold with Immobilized Enzymes During Flow-Induced Gelation for Sensitive H2O2 Biosensing,” Adv. Mater., 2010, 22, 2809-2813.
7.2 S. Cherevko and C.-H. Chung, “The Porous CuO Electrode Fabricated by Hydrogen Bubble Evolution and its Application to Highly Sensitive Non-Enzymatic Glucose Detection,” Talanta, 2010, 80, 1371-1377.
7.3 M. Yang, F. Qu, Y. Lu, Y. He, G. Shen and R. Yu, “Platinum Nanowire Nanoelectrode Array for the Fabrication of Biosensors,” Biomaterials, 2006, 27, 5944-5950.
7.4 Y. Mu, D. Jia, Y. He, Y. Miao and H.-L. Wu, “Nano Nickel Oxide Modified Non-Enzymatic Glucose Sensors with Enhanced Sensitivity Through an Electrochemical Process Strategy at High Potential,” Biosens. Bioelectron., 2011, 26, 2948-2952.
7.5 X. Wang, Y. Zhang, C. E. Banks, Q. Chen and X. Ji, “Non-Enzymatic Amperometric Glucose Biosensor Based on Nickel Hexacyanoferrate Nanoparticle Film Modified Electrodes,” Colloids Surf. B, 2010, 78, 363-366.
7.6 Z. Zhuang, X. Su, H. Yuan, Q. Sun, D. Xiao and M. M. F. Choi, “An Improved Sensitivity Non-Enzymatic Glucose Sensor Based on a CuO Nanowire Modified Cu Electrode,” Analyst, 2008, 133, 126-132.
7.7 T. Soejima, H. Yagyu, N. Kimizuka and S. Ito, “One-Pot Alkaline Vapor Oxidation Synthesis and Electrocatalytic Activity towards Glucose Oxidation of CuO Nanobelt Arrays,” RSC. Adv., 2011, 1, 187-190.
7.8 L.-Q. Rong, C. Yang, Q.-Y. Qian and X.-H. Xia, “Study of the Nonenzymatic Glucose Sensor based on Highly Dispersed Pt Nanoparticles Supported on Carbon Nanotubes,” Talanta, 2007, 72, 819-824.
7.9 L. D. Burke, G. M. Bruton and J. A. Collins, “The Redox Properties of Active Sites and the Importance of the Latter in Electrocatalysis at Copper in Base,” Electrochim. Acta, 1998, 44, 1467-1479.
7.10 Y. Li, Y.-Y. Song, C. Yang and X.-H. Xia, “Hydrogen Bubble Dynamic Template Synthesis of Porous Gold for Nonenzymatic Electrochemical Detection of Glucose,” Electrochem. Commun., 2007, 9, 981-988.
7.11 H. Liu, X. Su, X. Tian, Z. Huang, W. Song and J. Zhao, “Preparation and Electrocatalytic Performance of Functionalized Copper-Based Nanoparticles Supported on the Gold Surface,” Electroanalysis. 2006, 18, 2055-2060.
7.12 X. Kang, Z. Mai, X. Zou, P. Cai and J. Mo, “A Sensitive Nonenzymatic Glucose Sensor in Alkaline Media with a Copper Nanocluster/Multiwall Carbon Nanotube-Modified Glassy Carbon Electrode,” Anal. Biochem., 2007, 363, 143-150.
7.13 M. U. A. Prathap, B. Kaur and R. Srivastava, “Hydrothermal Synthesis of CuO Micro-/Nanostructures and their Applications in the Oxidative Degradation of Methylene Blue and Non-Enzymatic Sensing of Glucose/H2O2,” J. Colloid Interface Sci., 2012, 370, 144-154.
7.14 S. T. Farrell and C. B. Breslin, “Oxidation and Photo-Induced Oxidation of Glucose at a Polyaniline Film Modified by Copper Particles,” Electrochim. Acta, 2004, 49, 4497-4503.
7.15 X. Zhang, D. Li, L. Bourgeois, H. Wang and P. A. Webley, “Direct Electrodeposition of Porous Gold Nanowire Arrays for Biosensing Applications,” ChemPhysChem, 2009, 10, 436-441.
Chapter 9
9.1 D. P. DiVincenzo, “Quantum Computation,” Science, 1995, 270, 255-261.
9.2 P. Che, S. Liu, C. Sun, H. Zhou, W. Li and J. Tang, “Effect of Oxygen Vacancy on Magnetism of ZnO:Co Single-Crystalline Nanorods,” J. Magn. Magn. Mater., 2013, 327, 28-30.
9.3 H. Ohno, A. Shen, F. Matsukura and A. Oiwa, “(Ga,Mn)As: A New Diluted Magnetic Semiconductor Based on GaAs,” Appl. Phys. Lett., 1996, 69, 363-365.