簡易檢索 / 詳目顯示

研究生: 江麗芬
Chiang, Li Fen
論文名稱: 銅修飾二氧化鈦光催化降解新興污染物之研究:以BPA及SMX為例
Copper modified-TiO2 photocatalysts for the degradation of BPA and SMX
指導教授: 董瑞安
Doong, Ruey An
口試委員: 盧明俊
白曛綾
盧重興
吳劍侯
王竹方
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 139
中文關鍵詞: 銅修飾二氧化鈦磺胺甲噁唑雙酚A
外文關鍵詞: Cu-TiO2, SMX, BPA
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銅修飾二氧化鈦為一新型環境淨化材料,其廣泛的被應用在光催化降解及氫能源還原的領域。在光催化降解部分,目前已有許多銅修飾二氧化鈦的合成方法,但因不同的方法所產生的銅物種的不同所造成的影響也不一樣,因此,系統性比較不同銅物種對二氧化鈦的影響為相當重要的課題。故本研究的主要目的是嘗試利用微波輔助浸滲(microwave-assisted impregnation)合成Cu2+-TiO2,高溫熱處理(high temperature heating)合成CuO-TiO2及化學還原(chemical reduction)合成Cu0-TiO2且利用雙酚A(BPA)及磺胺甲噁唑(SMX)來進行銅修飾二氧化鈦之光催化效能評估。
    在Cu2+-TiO2部分,主要是利用微波輔助浸滲法來合成0.006-0.065 wt% Cu2+-P25和0.012-0.072 wt% Cu2+-ST01。Cu2+-TiO2主要是由二價的CuO修飾在二氧化鈦上。而Cu2+-TiO2中的Cu2+提供一個能階,故能縮短其電子跳躍的距離且降低電子電洞再結合的能力而有效的提升其可見光催化效能。在SMX的可見光催化降解部分,Cu2+-P25的反應速率為P25的2.9-14倍且0.045 wt% Cu2+-P25具有最佳的光催化效能。在BPA的可見光催化降解部分,Cu2+-P25的反應速率為P25的1.5-2.3倍且0.039 wt% Cu2+-P25具有最佳的光催化效能。而Cu2+-ST01的反應速率為ST01的1.5-3.7倍且0.055 wt% Cu2+-ST01具有最佳的光催化效能。
    在CuO-TiO2部分,主要是利用高溫熱處理法來合成1.1-22.4 wt% CuO-TiO2奈米棒。CuO-TiO2奈米棒主要是由二價的CuO和Cu(OH)2修飾在二氧化鈦上。而CuO -TiO2奈米棒中的CuO提供一個儲存電子的位置,故能降低TiO2電子電洞再結合的能力而有效的提升其紫外光催化效能。在BPA的紫外光催化降解部分,CuO-TiO2奈米棒的反應速率為TiO2奈米棒的0.5-5.5倍。

    在Cu0-TiO2部分,主要是利用化學還原法來合成0.4-20.0 wt% Cu0-TiO2奈米棒。Cu0-TiO2奈米棒主要是由Cu2O和Cu0修飾在二氧化鈦上。而Cu0-TiO2奈米棒中的Cu0提供一個儲存電子的位置,故能降低二氧化鈦電子電洞再結合的能力而有效的提升其紫外光催化效能。在可見光狀況下,可見光激發Cu2O產生光電子且經由Cu0到TiO2,故能在可見光下進行光催化反應且降低電子電洞再結合的能力而有效的提升其光催化效能。在BPA的紫外光催化降解部分,Cu0-TiO2奈米棒的反應速率為TiO2奈米棒的1.3-18.4倍且6.9 wt% Cu0-TiO2奈米棒具有最佳的光催化效能。在BPA的可見光催化降解部分,Cu0-TiO2奈米棒的反應速率為TiO2奈米棒的反應速率分別為P25跟Cu-P25的6跟5倍。
    本研究結果顯示銅修飾TiO2催化劑能有效率被紫外光跟可見光激發來降解BPA跟SMX且銅修飾TiO2也極具潛力來降解其他新興汙染物。


    Copper-based TiO2 have been demonstrated to be a potential photocatalyst for
    photodegradation and hydrogen production. In the photodegradation area, many
    method had been used to synthesize different Cu species-TiO2, which caused different
    effects in the photodegradation. Therefore, a systematic comparison for different Cu
    species on TiO2 is needed. The main purpose of this study is to use
    microwave-assisted impregnation, high temperature heating and chemical reduction to
    synthesize Cu2+-TiO2, CuO-TiO2 and Cu0-TiO2, respectively. Bisphenol A (BPA) and
    sulfamethoxazole (SMX) were used as target compounds to evaluate the
    photodegradation efficiency and rate of different Cu species-TiO2.
    Cu2+-TiO2 was synthesized by microwave-assisted impregnation. The mass
    loadings of Cu(II) were 0.006-0.065 wt% copper for P25 and 0.012-0.072 wt% copper
    for ST01 and the major species of copper was CuO on the Cu-P25. Due to the redox
    potential of Cu(II)/Cu(I) (0.3-0.5 V vs. SHE) and copper oxide as an electron
    mediator, Cu2+-TiO2 have the potential to enable the absorption of light not only in the
    ultraviolet but also in the visible light wavelength region and reduce the e/h
    recombination to improve the photocatalytic efficiency. The pseudo-first-order rate
    constants (kobs) for SMX photodegradation by Cu2+-P25 were 2.9–14.1 times higher
    than that of pure Degussa P25 and the relative activity of Cu2+-P25 for BPA
    photodegradation was 1.5-2.3 times. The relative activity of Cu2+-ST01 for BPA
    photodegradation was 1.5-3.7 times. The optimal loading of Cu(II) to enhance the
    photocatalytic activity of P25 and ST01 were 0.045 wt% and 0.055 wt%, respectively.

    CuO-TiO2 nanorods were synthesized by high temperature heating and
    CuO-TiO2 nanorods contain 1.1-22.4 wt% copper with CuO and Cu(OH)2 on
    CuO-TiO2. CuO on the CuO-TiO2 nanorods was as an electron tank to reduce the e/h
    recombination and improve the photocatalytic efficiency under the UV light
    irradiation. BPA were used to evaluate the photodegradation efficiency and rate of
    Cu-TiO2 nanorods under the irradiation of 365 nm UV light. The relative activity of
    CuO-TiO2 nanorods were 0.5-5.5 times.
    Cu0-TiO2 nanorods with 0.4-20.0 wt% copper were synthesized by chemical
    reduction. The XRD and XPS results indicated that Cu species on the Cu-TiO2
    nanorods were mainly Cu2O and Cu0. Cu0 as an electron tank on the Cu0-TiO2
    nanorods reduce the e/h recombination and improve the photocatalytic efficiency
    under the UV light irradiation. Cu2O was a semiconductor to excite by visible light
    and produce electron to Cu0 and TiO2 to improve the photocatalytic efficiency. The
    Cu0-TiO2 nanorods exhibited excellent photocatalytic activity towards BPA
    photodegradation. The relative activity of Cu0-TiO2 nanorods were 1.3-18.4 times and
    the optimal loading of Cu to enhance the photocatalytic activity of TiO2 nanorods
    were 6.9 wt%. In addition, the kobs for BPA photodegradation by 6.9 wt% Cu0-TiO2
    nanorods increases by factors of 6 for P25 and 5 for Cu0-P25 in the presence of 460 
    40 nm visible light.
    Results obtained in this study clearly demonstrate that Cu modified-TiO2
    nanomaterials are an effective photocatalyst for degradation of BPA and SMX under
    UV or visible light conditions and have potential to decompose emerging pollutants.

    Content index 中文摘要 I Abstract III Content index V Figure index VIII Table index XII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Objectives 3 Chapter 2. Background and theory 4 2.1Titanium dioxide 4 2.1.1 Progress in TiO2 photocatalysis: a shorthistorical overview 4 2.1.2 TiO2 structures and properties 4 2.1.3 Mechanisms of TiO2 photocatalysis 6 2.2 Synthetic methods for TiO2nanostructures 8 2.2.1 Sol−gel method 10 2.2.2 Nonhydrolytic sol-gel method 11 2.2.3 Hydrothermal method 13 2.2.4 Solvothermal method 13 2.2.5 Microwave-assisted method 14 2.3 Modification of TiO2 photocatalyst 16 2.3.1 Metal deposition 17 2.3.2 Heterostructures 18 2.3.3 Doping 20 2.4 The preparation of copper-based TiO2 photocatalyst 21 2.5 Emerging contaminants (ECs) 30 2.5.1 Bisphenol A 30 2.5.2 Sulfomethoxazole (SMX) 35 Chapter 3 Materials and methods 39 3.1 Experimental design 39 3.2 Experimental details for material synthesis 41 3.2.1 Chemicals 41 3.2.2 Synthesis of TiO2 nanomaterials 42 3.2.3 Fabrication of Cu2+-TiO2 composites by microwave-assisted impregnation method 44 3.2.4 Synthesis of CuO-TiO2 nanorod composites by high temperature heating method 45 3.2.5 Synthesis of Cu0-TiO2 nanorod composites by chemical reduction method 46 3.3 Photodegradation 47 3.3.1 Photodegradation of SMX and BPA by Cu-TiO2-based nanomaterials ………………………………..…………………………………………………………………..47 3.3.2 pH effect 48 3.3.3 Stability 48 3.3.4 Visible light 49 3.3.5 BPA and SMX analysis 49 3.4 Characterization 50 3.4.1 TEM and EDX 52 3.4.2 BET 52 3.4.3 X-ray diffraction (XRD) 52 3.4.4 Thermal analysis (TGA) 53 3.4.5 Electron probe microanalyzer (EPMA) 53 3.4.6 X-ray adsorption near-edge structure (XANES) 53 3.4.7 High resolution X-ray Photoelectron Spectrometer (XPS) 54 3.4.8 Ultraviolet-Visible (UV-Vis) spectroscopy 54 3.4.9 Energy dispersive X-ray spectroscopy (EDX) 55 3.4.10 Inductively coupled plasma-optical emission spectroscopy (ICP-OES) 55 3.4.11 Particle size 55 Chapter 4 Results and discussion 56 4.1 Fabrication of Cu2+-TiO2 with commercial P25 and ST01 56 4.1.1 Morphology and Crystallization of Cu-TiO2 57 4.1.2 Specific surface area and pore textures of Cu2+-TiO2 64 4.1.3 Copper species characterizationof Cu2+-TiO2 68 4.1.4 Optical property of Cu2+-TiO2 70 4.1.5 Effect of copper concentration on photodegradation of SMX 72 4.1.5 Effect of pH on photodegradation of SMX 74 4.1.6 Effect of copper concentration on photodegradation of BPA (Cu2+-P25) … 79 4.1.7 The photodegradation of BPA under the irradiation of visible light 81 4.1.8 Effect of pH on photodegradation of BPA 82 4.1.9 Effect of copper concentration on photodegradation of BPA (Cu2+-ST01) 83 4.2 Fabrication of TiO2 nanomaterials 88 4.2.1 Morphology and crystallization of TiO2 nanorods 88 4.2.2The photodegradation of BPA with TiO2 nanorods 91 4.3 Synthesis of different Cu species-TiO2 nanocomposties by different methods 92 4.3.1 Cu2+-TiO2 nanorod--Microwave-assisted impregnation method 92 4.3.2 CuO-TiO2 nanorod--High temperature heating method 95 4.3.2.1 Morphology and crystallization of CuO-TiO2 nanorods 95 4.3.2.2 Specific surface area and pore textures of CuO-TiO2 nanorods 98 4.3.2.3 Copper species characterization of CuO-TiO2 nanorods 101 4.3.2.3 The photodegradation of BPA of CuO-TiO2 nanorods 102 4.3.3 Cu0-TiO2 nanorod—Chemical reduction method 104 4.3.3.1 Morphology and crystallization of Cu0-TiO2 nanorods 104 4.3.3.1 Specific surface area and pore textures of Cu0-TiO2 nanorods 109 4.3.3.3 Photodegradation of BPA by Cu0-TiO2 nanorods under Visible light irradiation condition 119 4.3.3.4 Photodegradation of BPA by Cu-TiO2 nanorods by chemical reduction methodin the presence of humic acid 121 Chapter 5 Conclusions and suggestion 123 5.1 Conclusions 123 5.2 Suggestion 125 Reference 127   Figure index Figure 1-1. Applications of TiO2 photocatalysis 2 Figure 2-1. Crystalline structures of titanium dioxide (a) anatase, (b) rutile, (c) brookite. 5 Figure 2-2. Schematic illustration of the formation of photogenerated charge carriers(hole and electron) upon absorption of UV light. 7 Figure 2-3. Processes occurring on bare TiO2 particles after UV excitation. 7 Figure 2-4. Various steps in the sol–gel process to control the final morphology of the product 11 Figure 2-5. Inverted temperature gradients in microwave versus oil-bath heating: difference in the temperature profiles after 1 min of microwave irradiation (left) and treatment in an oil-bath (right). 15 Figure 2-6. Various modification methods of TiO2 photocatalyst 16 Figure 2-7. Fermi level equilibration in a semiconductor-metal nanocomposite system 17 Figure 2-8. Schematic diagram showing the energy band structure and electron–hole pair separation in the p–n heterojunction. 19 Figure 2-9. The chemical structure of bisphenol A. 31 Figure 2-10. The chemical structure of SMX. 35 Figure 3-1. Flowchart of the fabrication Cu-TiO2 nanomaterials and their photocatalysis application. 40 Figure 3-2. Synthesis of TiO2 nanorod. 42 Figure 3-3. The ligand exchange procedure for TiO2 nanorods/nanowire. 43 Figure 3-4. Fabrication of Cu2+-P25 or Cu2+-ST01 or Cu2+-TiO2 nanorod by microwave-assisted impregnation method. 44 Figure 3-5. Fabrication of CuO-TiO2 nanorods by high temperature heating method. 45 Figure 3-6. Fabrication of Cu0-TiO2 nanorods by chemical reduction method. 46 Figure 3-7. The spectrum of fluorescent lamp. (a) UV light, (b) Visible light. 48 Figure 4-1. The TEM images of Degussa P25 (a) and Degussa P25 with different copper contents (b) 0.006, (c) 0.016, (d) 0.039, (e) 0.045, and (f) 0.063 wt% 58 Figure 4-2. The TEM images of ST01 (a) and ST01 with different copper contents (b) 0.012, (c) 0.022, (d) 0.045, (e) 0.055, and (f) 0.072 wt%. 59 Figure 4-3. The XRD patterns of Degussa P25 and Cu2+-P25. The mass loadings of Cu were in the range of 0.016-0.063 wt%. 60 Figure 4-4. The XRD patterns of pure ST01 and Cu2+-ST01. The mass loadings of Cu were inthe range of 0.012-0.072 wt%. 61 Figure 4-5. The EPMA elemental mapping of (a) Ti, (b) O, and (c) Cu, and (d) SEM image of 0.045 wt% Cu2+-P25. 63 Figure 4-6. The EPMA elemental mapping of (a) Ti, (b) O, and (c) Cu, and (d) SEM image of 0.045 wt% Cu2+-ST01. 63 Figure 4-7. Nitrogen adsorption-desorption isotherms (a) and pore size distribution (b) of Degussa P25 and Cu2+-P25. The mass loadings of Cu were in the range 0.016-0.063 wt%. 65 Figure 4-8. Nitrogen adsorption-desorption isotherms (a) and pore size distribution (b) of ST01 and Cu2+-ST01. The mass loadings of Cu were in the range 0.012-0.072 wt%. 66 Figure 4-9. (a) The Cu K-edge XANES spectra of Cu, Cu2O, and CuO standards and 0.045 wt% Cu-P25 (b) The XPS spectra of 0.045 wt% Cu-P25. 69 Figure 4-10. UV-visible diffuse reflectance spectra of pure Degussa P25 and Cu2+-P25 at various mass loadings of 0.006–0.063 wt% Cu(a) and pure ST01 and Cu2+-ST01 at various mass loadings of 0.012–0.072 wt% Cu. 71 Figure 4-11. (a) The photodegradation of 4 mg/L SMX by various Cu loadings of Cu2+-P25 under the irradiation of 460  40 nm visible light at initial pH 5.2 and (b) the pseudo-first-order rate constant (kobs) for SMX photodegradation as a function of copper loading. The Cu loadings were in the range 0.006–0.063 wt%. 73 Figure 4-12. The pH effect on the photodegradation of SMX without the addition of buffer by Cu2+-P25 under the irradiation of 460  40 nm visible light. 75 Figure 4-13. The pH effect on the photodegradation of SMX with the addition of buffer by Cu2+-P25 under the irradiation of 460  40 nm visible light. 76 Figure 4-14. The recyclability of 1 mgL-1 SMX by 0.045 wt% Cu2+-TiO2 and Degussa P25 TiO2 under the irradiation of 460  40 nm visible light at initial pH 5.2. 78 Figure 4-15. (a) The photodegradation of 10 mg/L BPA by various Cu loadings of Cu2+-P25 under the irradiation of 460  40 nm visible light at initial pH 5.2 and (b) the pseudo-first-order rate constant (kobs) for BPA photodegradation and relative reactivity as a function of copper loading. The Cu loadings were in the range 0.006–0.063 wt%. 80 Figure 4-16. The photodegradation of 10 mg/L BPA by P25 and Cu2+-P25 under the irradiation of visible light (λ>420 nm) at initial pH 5.2. 81 Figure 4-17. The pH effect on the photodegradation of BPA with the addition of buffer by Cu2+-P25 under the irradiation of 460  40 nm visible light. 82 Figure 4-18. (a) The photodegradation of 10 mg/L BPA by various Cu loadings of Cu2+-ST01 under the irradiation of 460  40 nm visible light at initial pH 5.2 and (b) the pseudo-first-order rate constant (kobs) for BPA photodegradation and relative reactivity as a function of copper loading. The Cu loadings were in the range 0.012–0.072 wt%. 84 Figure 4-19. The TEM images of TiO2 nanorods. 88 Figure 4-20.The XRD patterns of TiO2 nanorods. 89 Figure 4-21. The TGA curves of TiO2 nanorods. 90 Figure 4-22. The photodegradation of 10 mg/L BPA by TiO2 nanorods under the irradiation of 460  40 nm visible light at initial pH 5.2. 91 Figure 4-23. (a) The photodegradation of 10 mg/L BPA by the TiO2 nanorods and Cu2+-TiO2 nanorods with different Cu(II) addition under the irradiation of 460  40 nm visible light at initial pH 5.2. (b) The pseudo-first-order rate constant (kobs) for BPA photodegradation and relative reactivity as a function of copper concentration. 94 Figure 4-24. The TEM images of CuO-TiO2 nanorods by high temperature heating at 110 °C with different copper contents (a) 1.1, (b) 2.7, (c) 8.1, and (d) 22.4 wt%. 96 Figure 4-25. The XRD patterns of CuO-TiO2 nanorods by high temperature heating at 110 °C. The mass loadings of Cu were in the range 1.1-22.4 wt%. 97 Figure 4-26. Nitrogen adsorption-desorption isotherms (a) and pore size distribution (b) of TiO2 nanorods and CuO-TiO2 nanorods. The mass loadings of Cu were in the range 1.1-22.4 wt%. 100 Figure 4-27. The XPS spectras of 8.1 wt% CuO-TiO2 nanorods by high temperature heating at 110 °C. 101 Figure 4-28. The photodegradation of 10 mg/L BPA by pure TiO2 nanorods, pure CuO and various Cu loadings of CuO-TiO2 nanorods by high temperature heating under the irradiation of 365 nm UV light at initial pH 5.2. 103 Figure 4-29. The TEM images of Cu0-TiO2 nanorod composites synthesized by using 0.8 mL TTIP as the precursor followed by reduction of various Cu loading of (a) 0.4 wt%, (b) 2.3 wt%, (c) 6.9 wt%, and (d) 20.0 wt% by NaBH4. Figures (e) and (f) are the HR-TEM image and EDS spectrum of Cu-TiO2 nanorod composites at 6.9 wt% Cu. 105 Figure 4-30. (a) XRD patterns of as-synthesized TiO2 nanorods and Cu0-TiO2 nanorods composite, (b) Cu 2p XPS spectra and (c) deconvolution of Cu 2p3/2 XPS spectra of 6.9 wt% Cu0-TiO2 nanorod composites. 107 Figure 4-31. The UV-visible diffuse reflectance spectra of as-synthesized TiO2 nanorods and Cu0-TiO2 nanorod composites at various mass loadings of Cu(II) ions ranging from 0.4-20 wt% 108 Figure 4-32. Nitrogen adsorption-desorption isotherms (a) and pore size distribution (b) of as-synthesized TiO2 and Cu0-TiO2 nanorods. The mass loadings of Cu were in the range 0.4-20.0 wt%. 110 Figure 4-33. (a) The photodegradation of 10 mg/L BPA by Cu0-TiO2 nanorod composites under UV light irradiation, and (b) kobs for BPA photodegradation as a function of copper loading. 112 Figure 4-34. (a) The photodegradation of 10 mg/L BPA by various TiO2-based nanomaterials under the irradiation of 365 nm UV light and (b) the comparison of kobs for BPA photodegradation in the presence of different TiO2-based materials. 115 Figure 4-35. The HPLC-MS spectra of intermediates produced from the photodegradation of bisphenol A by 6.9 wt% Cu-TiO2 nanorods. 117 Figure 4-36. (a) Photodegradation of 10 mg/L BPA by various TiO2-based nanomaterials under the irradiation of 460  40 nm visible light and (b) the kobs for BPA photodegradation by different TiO2 materials in the presence of visible light. 120 Figure 4-37. The photodegradation of 10 mg/L BPA in the presence of 1–25 mg/L humic acid by 6.9 wt% Cu0-TiO2 composites under the irradiation of 365 nm UV light. 122 Table index Table 2-1. Physical and structural properties of anatase and rutile TiO2. 6 Table 2-2. Comparison with five main methods to synthesize TiO2 nanomaterials. 9 Table 2-3. The method to prepare the copper-based TiO2 photocatalyst and their photodegradation efficiency 26 Table 2-4. Physicochemical properties of bisphenol A 31 Table 2-5.Photocatalytic oxidation of BPA by various TiO2-based photocatalyst. 34 Table 2-6. The physical and chemical properties of SMX. 35 Table 2-7. Summary of the advanced oxidation processes (AOPs) applied in treatment of environmental matrices contaminated with SMX. 37 Table 2-8. Photocatalytic oxidation of SMX by various TiO2-based photocatalyst. 38 Table 3-1. The characteristics of physicochemical analytical instruments used in this study. 51 Table 4-1. The specific surface area (SBET) and pore size of Cu2+-P25 and Cu2+-ST01 TiO2 nanoparticles fabricated by microwave-assisted impregnation method at 120 °C. 67 Table 4-2. The pseudo-first-order rate constant (kobs) for BPA photodegradation by Cu2+-TiO2 with various Cu loadings under visible light region and the relative reactivity of Cu2+-TiO2. 87 Table 4-3. The specific surface area (SBET) and pore size of TiO2 nanorods and CuO-TiO2 nanorods fabricated by high temperature heating at 110 °C. 99 Table 4-4. The specific surface area (SBET) and pore size of TiO2 nanorods and Cu0-TiO2 nanorods fabricated by chemical reduction method. 109 Table 4-5. The proposed chemical structures of intermediates produced from the photodegradation of bisphenol A by Cu-TiO2 nanorods under the irradiation of 365 nm UV light. 118

    Reference
    [1] K. Nakata, A. Fujishima, TiO2 photocatalysis: Design and applications, J. Photoch. Photobio. C, 13 (2012) 169-189.
    [2] A. Amtout, R. Leonelli, Optical-properties of rutile near its fundamental-band gap, Phys. Rev. B, 51 (1995) 6842-6851.
    [3] R. Asahi, Y. Taga, W. Mannstadt, A.J. Freeman, Electronic and optical properties of anatase TiO2, Phys. Rev. B, 61 (2000) 7459-7465.
    [4] X. Chen, S.S. Mao, Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications, Chem. Rev., 107 (2007) 2891-2959.
    [5] H. Irie, S. Miura, K. Kamiya, K. Hashimoto, Efficient visible light-sensitive photocatalysts: Grafting Cu(II) ions onto TiO2 and WO3 photocatalysts, Chem. Phys. Lett., 457 (2008) 202-205.
    [6] M.S. Diaz-Cruz, M.J. Garcia-Galan, P. Guerra, A. Jelic, C. Postigo, E. Eljarrat, M. Farre, M.J.L. de Alda, M. Petrovic, D. Barcelo, Analysis of selected emerging contaminants in sewage sludge, Trend Anal. Chem., 28 (2009) 1263-1275.
    [7] B.O. Clarke, S.R. Smith, Review of emerging organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids, Environ. Int., 37 (2011) 226-247.
    [8] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37-38.
    [9] G.N. Schrauzer, T.D. Guth, Photolysis of water and photoreduction of nitrogen on titanium-dioxide, J. Am. Chem. Soc., 99 (1977) 7189-7193.
    [10] M. Halmann, Photoelectrochemical reduction of aqueous carbon-dioxide on p-type gallium-phosphide in liquid junction solar-cells, Nature, 275 (1978) 115-116.
    [11] S.N. Frank, A.J. Bard, Heterogeneous photocatalytic oxidation of cyanide ion in aqueous-solutions at TiO2 powder, J. Am. Chem. Soc., 99 (1977) 303-304.
    [12] M. Gratzel, Photoelectrochemical cells, Nature, 414 (2001) 338-344.
    [13] A. Hagfeldt, M. Gratzel, Light-induced redox reactions in nanocrystalline systems, Chem. Rev., 95 (1995) 49-68.
    [14] A.L. Linsebigler, G.Q. Lu, J.T. Yates, photocatalysis on TiO2 surfaces - principles, mechanisms, and selected Results, Chem. Rev., 95 (1995) 735-758.

    [15] A. Mills, S. LeHunte, An overview of semiconductor photocatalysis, J. Photoch. Photobio. A, 108 (1997) 1-35.
    [16] N.T. Nolan, M.K. Seery, S.C. Pillai, Spectroscopic investigation of the anatase-to-rutile transformation of sol-gel-synthesized TiO2 photocatalysts, J. Phys. Chem. C, 113 (2009) 16151-16157.
    [17] Y. Hu, H.L. Tsai, C.L. Huang, Effect of brookite phase on the anatase-rutile transition in titania nanoparticles, J. Eur. Ceram. Soc., 23 (2003) 691-696.
    [18] A. Wisitsmat, A. Tuantranont, E. Comini, G. Sberveglieri, W. Modarski, Characterization of n-type and p-type semiconductor gas sensors based on NiOx doped TiO2 thin films, Thin Solid Films, 517 (2009) 2775-2780.
    [19] M. Koelsch, S. Cassaignon, C.T.T. Minh, J.F. Guillemoles, J.P. Jolivet, Electrochemical comparative study of titania (anatase, brookite and rutile) nanoparticles synthesized in aqueous medium, Thin Solid Films, 451 (2004) 86-92.
    [20] O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide, Prog. Solid State Ch., 32 (2004) 33-177.
    [21] M.A. Fox, M.T. Dulay, Heterogeneous photocatalysis, Chem. Rev., 93 (1993) 341-357.
    [22] M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chem. Rev., 95 (1995) 69-96.
    [23] C. Su, C.M. Tseng, L.F. Chen, B.H. You, B.C. Hsu, S.S. Chen, Sol-hydrothermal preparation and photocatalysis of titanium dioxide, Thin Solid Films, 498 (2006) 259-265.
    [24] https://staff.aist.go.jp/nomura-k/common/STRUCIMAGES/Anatase.gif.
    [25] https://staff.aist.go.jp/nomura-k/common/STRUCIMAGES/Rutile.gif.
    [26] https://staff.aist.go.jp/nomura-k/common/STRUCIMAGES/TiO2-Brookite.gif.
    [27] A. Fujishima, X.T. Zhang, D.A. Tryk, TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 63 (2008) 515-582.
    [28] J. Tian, Z.H. Zhao, A. Kumar, R.I. Boughton, H. Liu, Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review, Chem. Soc. Rev., 43 (2014) 6920-6937.
    [29] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O'Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal. B-Environ., 125 (2012) 331-349.

    [30] X.Y. Pan, M.Q. Yang, X.Z. Fu, N. Zhang, Y.J. Xu, Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications, Nanoscale, 5 (2013) 3601-3614.
    [31] M. Niederberger, G. Garnweitner, Organic reaction pathways in the nonaqueous synthesis of metal oxide nanoparticles, Chem.-Eur. J., 12 (2006) 7282-7302.
    [32] Y. Bessekhouad, D. Robert, J.V. Weber, Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions, J. Photoch. Photobio. A, 157 (2003) 47-53.
    [33] G. Oskam, A. Nellore, R.L. Penn, P.C. Searson, The growth kinetics of TiO2 nanoparticles from titanium(IV) alkoxide at high water/titanium ratio, J. Phys. Chem. B, 107 (2003) 1734-1738.
    [34] D. Barak, A. Ordentlich, Y. Segall, B. Velan, H.P. Benschop, L.P.A. DeJong, A. Shafferman, Carbocation-mediated processes in biocatalysts. Contribution of aromatic moieties, J. Am. Chem. Soc., 119 (1997) 3157-3158.
    [35] Z.Q. Tian, J.L. Richards, T.G. Traylor, Formation of Both Primary and Secondary N-Alkylhemins during Hemin-Catalyzed Epoxidation of Terminal Alkenes, J. Am. Chem. Soc., 117 (1995) 21-29.
    [36] D. Vorkapic, T. Matsoukas, Reversible agglomeration: A kinetic model for the peptization of titania nanocolloids, J. Colloid Interf. Sci., 214 (1999) 283-291.
    [37] R.L. Penn, J.F. Banfield, Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania, Geochim. Cosmochim. Ac., 63 (1999) 1549-1557.
    [38] B. C.J., S. G.W., Sol-gel science: The physics and chemsitry of sol–gel processing, 1990.
    [39] M. Niederberger, M.H. Bartl, G.D. Stucky, Benzyl alcohol and titanium tetrachloride-A versatile reaction system for the nonaqueous and low-temperature preparation of crystalline and luminescent titania nanoparticles, Chem. Mater., 14 (2002) 4364-4370.
    [40] H. Parala, A. Devi, R. Bhakta, R.A. Fischer, Synthesis of nano-scale TiO2 particles by a nonhydrolytic approach, J. Mater. Chem., 12 (2002) 1625-1627.
    [41] J. Tang, F. Redl, Y.M. Zhu, T. Siegrist, L.E. Brus, M.L. Steigerwald, An organometallic synthesis of TiO2 nanoparticles, Nano Lett., 5 (2005) 543-548.

    [42] P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, A. Vioux, Preparation of anatase, brookite and rutile at low temperature by non-hydrolytic sol-gel methods, J. Mater. Chem., 6 (1996) 1925-1932.
    [43] P. Arnal, R.J.P. Corriu, D. Leclercq, P.H. Mutin, A. Vioux, A solution chemistry study of nonhydrolytic sol-gel routes to titania, Chem. Mater., 9 (1997) 694-698.
    [44] J.N. Hay, H.M. Raval, Synthesis of organic-inorganic hybrids via the non-hydrolytic sol-gel process, Chem. Mater., 13 (2001) 3396-3403.
    [45] V. Lafond, P.H. Mutin, A. Vioux, Control of the texture of titania-silica mixed oxides prepared by nonhydrolytic sol-gel, Chem. Mater., 16 (2004) 5380-5386.
    [46] T.J. Trentler, T.E. Denler, J.F. Bertone, A. Agrawal, V.L. Colvin, Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions, J. Am. Chem. Soc., 121 (1999) 1613-1614.
    [47] C. Burda, X.B. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes, Chem. Rev., 105 (2005) 1025-1102.
    [48] C.B. Murray, C.R. Kagan, M.G. Bawendi, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies, Annu. Rev. Mater. Sci., 30 (2000) 545-610.
    [49] P.D. Cozzoli, E. Fanizza, M.L. Curri, D. Laub, A. Agostiano, Low-dimensional chainlike assemblies of TiO2 nanorod-stabilized Au nanoparticles, Chem. Commun., (2005) 942-944.
    [50] P.D. Cozzoli, A. Kornowski, H. Weller, Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods, J. Am. Chem. Soc., 125 (2003) 14539-14548.
    [51] P.D. Cozzoli, E. Fanizza, R. Comparelli, M.L. Curri, A. Agostiano, D. Laub, Role of metal nanoparticles in TiO2/Ag nanocomposite-based microheterogeneous photocatalysis, J. Phys. Chem. B, 108 (2004) 9623-9630.
    [52] B.H. Wu, C.Y. Guo, N.F. Zheng, Z.X. Xie, G.D. Stucky, Nonaqueous production of nanostructured anatase with high-energy facets, J. Am. Chem. Soc., 130 (2008) 17563-17567.
    [53] X.L. Li, Q. Peng, J.X. Yi, X. Wang, Y.D. Li, Near monodisperse TiO2 nanoparticles and nanorods, Chem.-Eur. J., 12 (2006) 2383-2391.
    [54] M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa, T. Tsuji, Microwave-assisted synthesis of metallic nanostructures in solution, Chem.-Eur. J., 11 (2005) 440-452.
    [55] S. Horikoshi, N. Serpone, Photochemistry with microwaves catalysts and environmental applications, J. Photoch. Photobio. C, 10 (2009) 96-110.
    [56] C.O. Kappe, Controlled microwave heating in modern organic synthesis, Angew. Chem. Int. Edit., 43 (2004) 6250-6284.
    [57] K.L. Ding, Z.J. Miao, Z.M. Liu, Z.F. Zhang, B.X. Han, G.M. An, S.D. Miao, Y. Xie, Facile synthesis of high quality TiO2 nanocrystals in ionic liquid via a microwave-assisted process, J. Am. Chem. Soc., 129 (2007) 6362-+.
    [58] A.B. Corradi, F. Bondioli, B. Focher, A.M. Ferrari, C. Grippo, E. Mariani, C. Villa, Conventional and microwave-hydrothermal synthesis of TiO2 nanopowders, J. Am. Ceram. Soc., 88 (2005) 2639-2641.
    [59] I. Bilecka, I. Djerdj, M. Niederberger, One-minute synthesis of crystalline binary and ternary metal oxide nanoparticles, Chem. Commun., (2008) 886-888.
    [60] X.H. Liao, N.Y. Chen, S. Xu, S.B. Yang, J.J. Zhu, A microwave assisted heating method for the preparation of copper sulfide nanorods, J. Cryst. Growth., 252 (2003) 593-598.
    [61] H. Park, Y. Park, W. Kim, W. Choi, Surface modification of TiO2 photocatalyst for environmental applications, J. Photoch. Photobio. C, 15 (2013) 1-20.
    [62] V. Subramanian, E.E. Wolf, P.V. Kamat, Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration, J. Am. Chem. Soc., 126 (2004) 4943-4950.
    [63] B. Sun, A.V. Vorontsov, P.G. Smirniotis, Role of platinum deposited on TiO2 in phenol photocatalytic oxidation, Langmuir, 19 (2003) 3151-3156.
    [64] W.B. Hou, Z.W. Liu, P. Pavaskar, W.H. Hung, S.B. Cronin, Plasmonic enhancement of photocatalytic decomposition of methyl orange under visible light, J. Catal., 277 (2011) 149-153.
    [65] Z.K. Zheng, B.B. Huang, X.Y. Qin, X.Y. Zhang, Y. Dai, M.H. Whangbo, Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol, J. Mater. Chem., 21 (2011) 9079-9087.
    [66] Y.Q. Qu, X.F. Duan, Progress, challenge and perspective of heterogeneous photocatalysts, Chem. Soc. Rev., 42 (2013) 2568-2580.
    [67] H.L. Wang, L.S. Zhang, Z.G. Chen, J.Q. Hu, S.J. Li, Z.H. Wang, J.S. Liu, X.C. Wang, Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances, Chem. Soc. Rev., 43 (2014) 5234-5244.

    [68] M. Shang, W.Z. Wang, L. Zhang, S.M. Sun, L. Wang, L. Zhou, 3D Bi2WO6/TiO2 Hierarchical Heterostructure: Controllable synthesis and enhanced visible photocatalytic degradation performances, J. Phys. Chem. C, 113 (2009) 14727-14731.
    [69] G.S. Li, D.Q. Zhang, J.C. Yu, A new visible-light photocatalyst: CdS quantum dots embedded mesoporous TiO2, Environ. Sci. Technol., 43 (2009) 7079-7085.
    [70] S. Gupta, M. Tripathi, A review of TiO2 nanoparticles, Chinese Sci. Bull., 56 (2011) 1639-1657.
    [71] H.W.P. Carvalho, M.V.J. Rocha, P. Hammer, T.C. Ramalho, TiO2-Cu photocatalysts: A study on the long- and short-range chemical environment of the dopant, J. Mater. Sci., 48 (2013) 3904-3912.
    [72] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-light photocatalysis in nitrogen-doped titanium oxides, Science, 293 (2001) 269-271.
    [73] R.A. Doong, C.W. Tsai, C.I. Liao, Coupled removal of bisphenol A and copper ion by titanate nanotubes fabricated at different calcination temperatures, Sep. Purif. Technol., 91 (2012) 81-88.
    [74] L. Clarizia, D. Spasiano, I. Di Somma, R. Marotta, R. Andreozzi, D.D. Dionysiou, Copper modified-TiO2 catalysts for hydrogen generation through photoreforming of organics. A short review, Int. J. Hydrogen Energ., 39 (2014) 16812-16831.
    [75] W.J. Foo, C. Zhang, G.W. Ho, Non-noble metal Cu-loaded TiO2 for enhanced photocatalytic H2 production, Nanoscale, 5 (2013) 759-764.
    [76] G.H. Li, N.M. Dimitrijevic, L. Chen, T. Rajh, K.A. Gray, Role of surface/interfacial Cu2+ sites in the photocatalytic activity of coupled CuO-TiO2 nanocomposites, J. Phys. Chem. C, 112 (2008) 19040-19044.
    [77] G. Hodes, Semiconductor and ceramic nanoparticle films deposited by chemical bath deposition, Phys. Chem. Chem. Phys., 9 (2007) 2181-2196.
    [78] G.J. Wu, N.J. Guan, L.D. Li, Low temperature CO oxidation on Cu-Cu2O/TiO2 catalyst prepared by photodeposition, Catal. Sci. Technol., 1 (2011) 601-608.
    [79] S.S. Zhang, S.Q. Zhang, F. Peng, H.M. Zhang, H.W. Liu, H.J. Zhao, Electrodeposition of polyhedral Cu2O on TiO2 nanotube arrays for enhancing visible light photocatalytic performance, Electrochem. Commun., 13 (2011) 861-864.
    [80] G. Colon, M. Maicu, M.C. Hidalgo, J.A. Navio, Cu-doped TiO2 systems with improved photocatalytic activity, Appl. Catal. B-Environ., 67 (2006) 41-51.
    [81] M. You, T.G. Kim, Y.M. Sung, Synthesis of Cu-doped TiO2 nanorods with various aspect ratios and dopant concentrations, Cryst. Growth Des., 10 (2010) 983-987.
    [82] C.Y. Tsai, H.C. Hsi, T.H. Kuo, Y.M. Chang, J.H. Liou, Preparation of Cu-doped TiO2 photocatalyst with thermal plasma torch for low-concentration mercury removal, Aerosol Air Qua. Res., 13 (2013) 639-648.
    [83] J. Arana, A.P. Alonso, J.M.D. Rodriguez, J.A.H. Melian, O.G. Diaz, J.P. Pena, Comparative study of MTBE photocatalytic degradation with TiO2 and Cu-TiO2, Appl. Catal. B-Environ., 78 (2008) 355-363.
    [84] J. Arana, J.M. Dona-Rodriguez, O. Gonzalez-Diaz, E.T. Rendon, J.A.H. Melian, G. Colon, J.A. Navio, J.P. Pena, Gas-phase ethanol photocatalytic degradation study with TiO2 doped with Fe, Pd and Cu, J. Mol. Catal. A-Chem., 215 (2004) 153-160.
    [85] C. Karunakaran, G. Abiramasundari, P. Gomathisankar, G. Manikandan, V. Anandi, Cu-doped TiO2 nanoparticles for photocatalytic disinfection of bacteria under visible light, J. Colloid. Interf. Sci., 352 (2010) 68-74.
    [86] S. Neubert, P. Pulisova, C. Wiktor, P. Weide, B. Mei, D.A. Guschin, R.A. Fischer, M. Muhler, R. Beranek, Enhanced photocatalytic degradation rates at rutile TiO2 photocatalysts modified with redox co-catalysts, Catal. Today, 230 (2014) 97-103.
    [87] S. Wang, K.K. Meng, L. Zhao, Q. Jiang, J.S. Lian, Superhydrophilic Cu-doped TiO2 thin film for solar-driven photocatalysis, Ceram. Int., 40 (2014) 5107-5110.
    [88] B.F. Xin, P. Wang, D.D. Ding, J. Liu, Z.Y. Ren, H.G. Fu, Effect of surface species on Cu-TiO2 photocatalytic activity, Appl. Surf. Sci., 254 (2008) 2569-2574.
    [89] J. Ya, N.N. Yang, F.J. Hu, Z.F. Liu, L. E, Preparation and activity evaluation of TiO2/Cu-TiO2 composite catalysts, J. Sol-Gel Sci. Techn., 73 (2015) 322-331.
    [90] P. Sangpour, F. Hashemi, A.Z. Moshfegh, Photoenhanced degradation of methylene blue on cosputtered M:TiO2 (M = Au, Ag, Cu) nanocomposite systems: A comparative study, J. Phys. Chem. C, 114 (2010) 13955-13961.
    [91] R.A. Doong, S.M. Chang, C.W. Tsai, Enhanced photoactivity of Cu-deposited titanate nanotubes for removal of bisphenol A, Appl. Catal. B-Environ., 129 (2013) 48-55.

    [92] M. Logar, I. Bracko, A. Potocnik, B. Jancar, Cu and CuO/titanate nanobelt based network assemblies for enhanced visible light photocatalysis, Langmuir, 30 (2014) 4852-4862.
    [93] S.K. Khanal, B. Xie, M.L. Thompson, S.W. Sung, S.K. Ong, J. Van Leeuwen, Fate, transport, and biodegradation of natural estrogens in the environment and engineered systems, Environ. Sci. Technol., 40 (2006) 6537-6546.
    [94] C. Ort, M.G. Lawrence, J. Rieckermann, A. Joss, Sampling for pharmaceuticals and personal care products (PPCPs) and illicit drugs in wastewater systems: Are your conclusions valid? a critical review, Environ. Sci. Technol., 44 (2010) 6024-6035.
    [95] W.T. Tsai, Human health risk on environmental exposure to bisphenol A: A review, J. Environ. Sci. Heal. C, 24 (2006) 225-255.
    [96] Y. Dong, D.Y. Wu, X.C. Chen, Y. Lin, Adsorption of bisphenol A from water by surfactant-modified zeolite, J.Colloid Interf. Sci., 348 (2010) 585-590.
    [97] Y.H. Kim, B. Lee, K.H. Choo, S.J. Choi, Selective adsorption of bisphenol A by organic-inorganic hybrid mesoporous silicas, Micropor. Mesopor. Mat., 138 (2011) 184-190.
    [98] N. Nakada, H. Shinohara, A. Murata, K. Kiri, S. Managaki, N. Sato, H. Takada, Removal of selected pharmaceuticals and personal care products (PPCPs) and endocrine-disrupting chemicals (EDCs) during sand filtration and ozonation at a municipal sewage treatment plant, Water Res., 41 (2007) 4373-4382.
    [99] Z. Frontistis, V.M. Daskalaki, A. Katsaounis, I. Poulios, D. Mantzavinos, Electrochemical enhancement of solar photocatalysis: Degradation of endocrine disruptor bisphenol A on Ti/TiO2 films, Water Res., 45 (2011) 2996-3004.
    [100] D.P. Mohapatra, S.K. Brar, R.D. Tyagi, R.Y. Surampalli, Concomitant degradation of bisphenol A during ultrasonication and Fenton oxidation and production of biofertilizer from wastewater sludge, Ultrason. Sonochem., 18 (2011) 1018-1027.
    [101] S.M. Chang, P.H. Lo, C.T. Chang, Photocatalytic behavior of TOPO-capped TiO2 nanocrystals for degradation of endocrine disrupting chemicals, Appl. Catal. B-Environ., 91 (2009) 619-627.

    [102] X.P. Wang, T.T. Lim, Effect of hexamethylenetetramine on the visible-light photocatalytic activity of C-N codoped TiO2 for bisphenol A degradation: Evaluation of photocatalytic mechanism and solution toxicity, Appl. Catal. A-General, 399 (2011) 233-241.
    [103] R.A. Doong, I.L. Kao, Fabrication and characterization of nanostructured titanate materials by the hydrothermal treatment method, Recent Pat. Nanotechnol., 2 (2008) 84-102.
    [104] J. Fenoll, P. Sabater, G. Navarro, G. Perez-Lucas, S. Navarro, Photocatalytic transformation of sixteen substituted phenylurea herbicides in aqueous semiconductor suspensions: Intermediates and degradation pathways, J. Hazard. Mater., 244 (2013) 370-379.
    [105] N. Murakami, Y. Kurihara, T. Tsubota, T. Ohno, Shape-controlled anatase titanium(IV) oxide particles prepared by hydrothermal treatment of peroxo titanic acid in the presence of polyvinyl alcohol, J. Phys. Chem. C, 113 (2009) 3062-3069.
    [106] N.Q. Wu, J. Wang, D. Tafen, H. Wang, J.G. Zheng, J.P. Lewis, X.G. Liu, S.S. Leonard, A. Manivannan, Shape-enhanced photocatalytic activity of single-crystalline anatase TiO2 (101) nanobelts, J. Am. Chem. Soc., 132 (2010) 6679-6685.
    [107] W.J. Zhou, H. Liu, R.I. Boughton, G.J. Du, J.J. Lin, J.Y. Wang, D. Liu, One-dimensional single-crystalline Ti-O based nanostructures: Properties, synthesis, modifications and applications, J. Mater. Chem., 20 (2010) 5993-6008.
    [108] R.A. Doong, L.F. Chiang, Coupled removal of organic compounds and heavy metals by titanate/carbon nanotube composites, Water Sci. Technol., 58 (2008) 1985-1992.
    [109] Y. Ohko, I. Ando, C. Niwa, T. Tatsuma, T. Yamamura, T. Nakashima, Y. Kubota, A. Fujishima, Degradation of bisphenol A in water by TiO2 photocatalyst, Environ. Sci.Technol., 35 (2001) 2365-2368.
    [110] R.C. Wang, D.J. Ren, S.Q. Xia, Y.L. Zhang, J.F. Zhao, Photocatalytic degradation of Bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR), J. Hazard. Mater., 169 (2009) 926-932.
    [111] J. Kim, B.S. Kwak, M. Kang, TiO2/carbon composites prepared from rice husk and the removal of bisphenol A in photocatalytic liquid system, Bull. Korean Chem. Soc., 31 (2010) 344-350.

    [112] C.S. Guo, M. Ge, L. Liu, G.D. Gao, Y.C. Feng, Y.Q. Wang, Directed synthesis of mesoporous TiO2 microspheres: catalysts and their photocatalysis for bisphenol A degradation, Environ. Sci. Technol., 44 (2010) 419-425.
    [113] L.J. Luo, X.J. Zhang, F.J. Ma, A.L. Zhang, L.C. Bian, X.J. Pan, F.Z. Jiang, Photocatalytic degradation of bisphenol A by TiO2-reduced graphene oxide nanocomposites, React. Kinet. Mech. Cat., 114 (2015) 311-322.
    [114] J. Yang, X.H. Wang, J. Dai, J.T. Li, Efficient visible-light-driven photocatalytic degradation with Bi2O3 coupling silica doped TiO2, Ind. Eng. Chem. Res., 53 (2014) 12575-12586.
    [115] R. Chalasani, S. Vasudevan, Cyclodextrin-functionalized Fe3O4@TiO2: Reusable, magnetic nanoparticles for photocatalytic degradation of endocrine-disrupting chemicals in water supplies, ACS Nano, 7 (2013) 4093-4104.
    [116] X. Zhang, X.K. Li, N.S. Deng, Enhanced and selective degradation of pollutants over cyclodextrin/TiO2 under visible light irradiation, Ind. Eng. Chem. Res., 51 (2012) 704-709.
    [117] A. Zacharakis, E. Chatzisymeon, V. Binas, Z. Frontistis, D. Venieri, D. Mantzavinos, Solar photocatalytic degradation of bisphenol A on immobilized ZnO or TiO2, Int. J. Photoenergy, (2013) 1-9.
    [118] C.Y. Kuo, Y.H. Yang, Exploring the photodegradation of bisphenol A in a sunlight/immobilized N-TiO2 System, Pol. J. Environ. Stud., 23 (2014) 379-384.
    [119] S.S. Gao, Z.W. Zhao, Y.P. Xu, J.Y. Tian, H. Qi, W. Lin, F.Y. Cui, Oxidation of sulfamethoxazole(SMX) by chlorine, ozone and permanganate-A comparative study, J. Hazard. Mater., 274 (2014) 258-269.
    [120] O. Gonzalez, C. Sans, S. Esplugas, Sulfamethoxazole abatement by photo-fenton toxicity, inhibition and biodegradability assessment of intermediates, J. Hazard. Mater., 146 (2007) 459-464.
    [121] R.F. Dantas, S. Contreras, C. Sans, S. Esplugas, Sulfamethoxazole abatement by means of ozonation, J. Hazard. Mater., 150 (2008) 790-794.
    [122] A.M. Wang, Y.Y. Li, A.L. Estrada, Mineralization of antibiotic sulfamethoxazole by photoelectro-fenton treatment using activated carbon fiber cathode and under UVA irradiation, Appl. Catal. B-Environ., 102 (2011) 378-386.
    [123] A.G. Trovo, R.F.P. Nogueira, A. Aguera, C. Sirtori, A.R. Fernandez-Alba, Photodegradation of sulfamethoxazole in various aqueous media: Persistence, toxicity and photoproducts assessment, Chemosphere, 77 (2009) 1292-1298.
    [124] M.N. Abellan, B. Bayarri, J. Gimenez, J. Costa, Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2, Appl. Catal. B-Environ., 74 (2007) 233-241.
    [125] L.H. Hu, P.M. Flanders, P.L. Miller, T.J. Strathmann, Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis, Water Res., 41 (2007) 2612-2626.
    [126] W. Baran, E. Adamek, A. Sobczak, A. Makowski, Photocatalytic degradation of sulfa drugs with TiO2, Fe salts and TiO2/FeCl3 in aquatic environment-kinetics and degradation pathway, Appl. Catal. B-Environ., 90 (2009) 516-525.
    [127] N.P. Xekoukoulotakis, C. Drosou, C. Brebou, E. Chatzisymeon, E. Hapeshi, D. Fatta-Kassinos, D. Mantzavinos, Kinetics of UV-A/TiO2 photocatalytic degradation and mineralization of the antibiotic sulfamethoxazole in aqueous matrices, Catal. Today, 161 (2011) 163-168.
    [128] A.M. Hu, X. Zhang, K.D. Oakes, P. Peng, Y.N. Zhou, M.R. Servos, Hydrothermal growth of free standing TiO2 nanowire membranes for photocatalytic degradation of pharmaceuticals, J. Hazard. Mater., 189 (2011) 278-285.
    [129] L. Xu, G.R.L.T. Wang, F.Y. Ma, Y.H. Zhao, N. Lu, Y.H. Guo, X. Yang, Photocatalytic degradation of an aqueous sulfamethoxazole over the metallic silver and Keggin unit codoped titania nanocomposites, Appl. Surf. Sci., 258 (2012) 7039-7046.
    [130] C. Pablos, J. Marugan, R. van Grieken, E. Serrano, Emerging micropollutant oxidation during disinfection processes using UV-C, UV-C/H2O2, UV-A/TiO2 and UV-A/TiO2/H2O2, Water Res., 47 (2013) 1237-1245.
    [131] M.J. Nalbandian, K.E. Greenstein, D.M. Shuai, M.L. Zhang, Y.H. Choa, G.F. Parkin, N.V. Myung, D.M. Cwiertny, Tailored synthesis of photoactive TiO2 nanofibers and Au/TiO2 nanofiber composites: Structure and reactivity optimization for water treatment applications, Environ. Sci. Technol., 49 (2015) 1654-1663.
    [132] M.Z. Dlugosz, P.; Kwiecien, A.; Szczubialka, K.; Krzek, J.; Nowakowska, Maria., Photocatalytic degradation of sulfamethoxazole in aqueous solution using a floating TiO2-expanded perlite photocatalyst, J. Hazard. Mater., 298 (2015) 146-153.
    [133] M. Ouzzine, M.A. Lillo-Rodenas, A. Linares-Solano, Photocatalytic oxidation of propene in gas phase at low concentration by optimized TiO2 nanoparticles, Appl. Catal. B-Environ., 134 (2013) 333-343.
    [134] C. Wang, Q.Q. Hu, J.Q. Huang, C. Zhu, Z.H. Deng, H.L. Shi, L. Wu, Z.G. Liu, Y.G. Cao, Enhanced hydrogen production by water splitting using Cu-doped TiO2 film with preferred (001) orientation, Appl. Surf. Sci., 292 (2014) 161-164.
    [135] S.L. Tian, M.J. Yu, W. Wang, Q. Wang, Z.Y. Wu, Investigating the speciation of copper in secondary fly ash by X-ray absorption spectroscopy, Environ. Sci. Technol., 43 (2009) 9084-9088.
    [136] J. Highfield, T. Liu, Y.S. Loo, B. Grushko, A. Borgna, Skeletal Ru/Cu catalysts prepared from crystalline and quasicrystalline ternary alloy precursors: characterization by X-ray absorption spectroscopy and CO oxidation, Phys. Chem. Chem. Phys., 11 (2009) 1196-1208.
    [137] L.C. Lei, Y.L. Su, M.H. Zhou, X.W. Zhang, X.Q. Chen, Fabrication of multi-non-metal-doped TiO2 nanotubes by anodization in mixed acid electrolyte, Mater. Res. Bull., 42 (2007) 2230-2236.
    [138] M. Liu, X.Q. Qiu, M. Miyauchi, K. Hashimoto, Cu(II) oxide amorphous nanoclusters grafted Ti3+ self-doped TiO2: An efficient visible light photocatalyst, Chem. Mater., 23 (2011) 5282-5286.
    [139] O. Sukreeyapongse, P.E. Holm, B.W. Strobel, S. Panichsakpatana, J. Magid, H.C.B. Hansen, pH-dependent release of cadmium, copper, and lead from natural and sludge-amended soils, J. Environ. Qual., 31 (2002) 1901-1909.
    [140] J.F. Niu, L.L. Zhang, Y. Li, J.B. Zhao, S.D. Lv, K.Q. Xiao, Effects of environmental factors on sulfamethoxazole photodegradation under simulated sunlight irradiation: Kinetics and mechanism, J. Environ. Sci.-China, 25 (2013) 1098-1106.
    [141] C.C. Lee, R.A. Doong, Concentration effect of copper loading on the reductive dechlorination of tetrachloroethylene by zerovalent silicon, Water Sci. Technol., 62 (2010) 28-35.
    [142] S.J. Bransfield, D.M. Cwiertny, A.L. Roberts, D.H. Fairbrother, influence of copper loading and surface coverage on the reactivity of granular iron toward 1,1,1-trichloroethane, Environ. Sci. Technol., 40 (2006) 1485-1490.
    [143] J. Joo, S.G. Kwon, T. Yu, M. Cho, J. Lee, J. Yoon, T. Hyeon, Large-scale synthesis of TiO2 nanorods via nonhydrolytic sol-gel ester elimination reaction and their application to photocatalytic inactivation of E. coli, J. Phys. Chem. B, 109 (2005) 15297-15302.


    [144] V.K. Gupta, R. Jain, A. Mittal, T.A. Saleh, A. Nayak, S. Agarwal, S. Sikarwar, Photo-catalytic degradation of toxic dye amaranth on TiO2/UV in aqueous suspensions, Mat. Sci. Eng. C-Mater., 32 (2012) 12-17.
    [145] E. Farfan-Arribas, R.J. Madix, Characterization of the acid-base properties of the TiO2(110) surface by adsorption of amines, J. Phys. Chem. B, 107 (2003) 3225-3233.
    [146] S.M. Chang, Y.Y. Hsu, T.S. Chan, Chemical capture of phosphine by a sol-gel-derived Cu/TiO2 adsorbent - interaction mechanisms, J. Phys. Chem. C, 115 (2011) 2005-2013.
    [147] M. Epifani, E. Comini, G. Faglia, J. Arbiol, T. Andreu, G. Pace, P. Siciliano, J.R. Morante, Two step, hydrolytic-solvothermal synthesis of redispersible titania nanocrystals and their gas-sensing properties, J. Sol-Gel Sci. Techn., 60 (2011) 254-259.
    [148] R.J. Tayade, R.G. Kulkarni, R.V. Jasra, Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water, Ind. Eng. Chem. Res., 45 (2006) 5231-5238.
    [149] R.J. Tayade, R.G. Kulkarni, R.V. Jasra, Photocatalytic degradation of aqueous nitirobenzene by nanocrystalline TiO2, Ind. Eng. Chem. Res., 45 (2006) 922-927.
    [150] S. Horikoshi, T. Miura, M. Kajitani, N. Horikoshi, N. Serpone, Photodegradation of tetrahalobisphenol-A (X = Cl, Br) flame retardants and delineation of factors affecting the process, Appl. Catal. B-Environ., 84 (2008) 797-802.
    [151] S. Fukahori, H. Ichiura, T. Kitaoka, H. Tanaka, Capturing of bisphenol A photodecomposition intermediates by composite TiO2-zeolite sheets, Appl. Catal. B-Environ., 46 (2003) 453-462.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE