研究生: |
何怡慧 Yi-Hui Ho |
---|---|
論文名稱: |
同功群間捕食數學模型之分析 Mathematical analysis on a Droop model with intraguild predation. |
指導教授: |
許世壁
Sze-Bi Hsu |
口試委員: |
王信華
Shin-Hwa Wang 王埄彬 Feng-Bin Wang |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 21 |
中文關鍵詞: | 同功群間捕食 、物種競爭 |
外文關鍵詞: | intraguild predation, uniform persistence |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討兩個物種儲存內能競爭單一資源的數學模型,其中一個物種可以作為一個同功群間捕食者(intraguild predator),它也吃其他的物種。我們利用 uniform persistence 的定理去證明在一些合適的條件下,這兩個物種共存是可能的,我們的數值模擬也證實了理論結果。值得注意的是,在參考文獻[18]或[19]中,已經證明在典型沒有捕食功能的模型中,物種會競爭排斥,也就是說,對資源濃度需求量最低的物種會單獨存活,而其他物種終將滅絕。從我們的研究中,同功群間捕食(intraguild predation)可促進物種共存的可能性。
In this thesis, we investigate a mathematical model of two species competing in a chemostat for one resource that is stored internally, where one of the species can act as an intraguild predator that also feeds on the other species. We utilize theory of uniform persistence to prove that coexistence is possible under some suitable conditions, and our numerical simulations also confirm theoretical results.
It is worth noting that Smith and Waltman proved that competitive exclusion holds for the classical model without predation, that is, the species that can grow at the lowest nutrient concentration will win the competition. From our study, intraguild predation may promote the possibility of coexistence.
[1] Polis, G. A. et al., The ecology and evolution of intraguild predation: po-tential competitiors that eat each other, Annu. Rew. Ecol. Syst. 20 (1989),pp. 297-330.
[2] Arim, M. and Marquet, P. A., Intraguild predation: a widespread inter-action related to species biology, Ecol. Lett. Syst. 7 (2004), pp. 557-564.
[3] R. D. Holt and G. A. Polis, A theoretical framework for intraguild predation, American Naturalist 149(1997), pp. 746-764.
[4] Zubkov, M. V. and Tarran, G. A. , High bacterivory by the smallest phytoplankton in the North Atlantic Ocean, Nature, 455 (2008), pp. 224-226.
[5] Hartmann, M. et al. , Mixotrophic basis of Atlantic oligotrophic ecosys-tems, Proc. Natl Acad. Sci. USA, 109 (2012), pp. 5756-5760.
[6] Flynn, K. J. et al., Misuse of the phytoplankton zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types,
J. Plankton Res. 35 (2013), pp. 3-11.
[7] Thingstad, T. F. et al., On the strategy of "eating your competitor": a mathematical analysis of algal mixotrophy, Ecology 77 (1996), pp. 2108-2118.
[8] A. Cunningham and R. M. Nisbet, Time lag and cooperativity in the transient growth dynamics of microalgae, J. Theoret. Biol. 84 (1980), pp. 189-203.
[9] A. Cunningham and R. M. Nisbet, Transient and Oscillation in Continuous Culture, Mathematics in Microbiology, M. J. Bazin (Ed.), ed., Academic Press, New York, (1983).
[10] M. Droop, Some thoughts on nutrient limitation in algae, J. Phycol., 9(1973), pp. 264-272.
[11] J. P. Grover, Resource competition in a variable environment: phytoplankton growing according to the variable-internal-stores model, Amer. Natur. , 138(1991), pp. 811-835.
[12] J. P. Grover, Resource storage and competition with spatial and temporal variation in resource availability, Amer. Natur. , 178 (2011), pp. E124-E148.
[13] J. P. Grover, Constant- and variable-yield models of population growth: Responses to environmental variability and implications for competition, J.Theoret. Biol., 158 (1992), pp. 409-428.
[14] J. P. Grover, Resource Competition, Chapman and Hall, London, 1997.
[15] S. B. Hsu, Ordinary dierential equations with applications, Series on Applied mathematics, 16, World Scientic Publishing (2006).
[16] F. M. M. Morel, Kinetics of nutrient uptake and growth in phytoplankton, J. Phycol. 23 (1987), pp. 137-150.
[17] H. L. Smith, Monotone Dynamical Systems:An Introduction to the Theory of Competitive and Cooperative Systems, Math. Surveys Monogr 41, American Mathematical Society, Providence, RI, 1995.
[18] H. L. Smith and P. E. Waltman, Competition for a single limiting re-souce in continuous culture: the variable-yield model, SIAM J. Appl. Math., 34 (1994), pp. 1113{1131.
[19] H. L. Smith and P. E.Waltman, The Theory of the Chemostat, Cambridge Univ. Press, 1995.
[20] H. R. Thieme, Convergence results and a Poincare-Bendixson trichotomy for asymptotically autonomous dierential equations, J. Math. Biol. (1992), pp. 755-763.
[21] S. Wilken, J. M. H. Verspagen, S. Naus-Wiezer, E. V. Donk and J. Huisman, Comparison of predator-prey interactions with and without intraguild predation by manipulation of the nitrogen source, Oikos 123 (2014),
pp. 423-432.
[22] X.-Q. Zhao, Dynamical Systems in Population Biology, Springer, New York,2003.