研究生: |
唐善誠 Tang, Shan-Cheng |
---|---|
論文名稱: |
鋁金屬錯合物Al(Tralen)及Tralen化合物在可控/活性自由基聚合反應的運用 Controlled/Living Radical Polymerization Mediated by Al(Tralen) Complexes and Tralen Compounds |
指導教授: |
彭之皓
Peng, Chi-How |
口試委員: |
王潔
Wang, Jane 陳俊太 Chen, Jiun-Tai |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 自由基聚合 、有機鋁錯合物 、醋酸乙烯酯 |
外文關鍵詞: | radical polymerization, aluminum complexes, Vinyl acetate |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以新開發的Al(Tralen) 有機鋁金屬錯合物及Tralen化合物 (2,2'-(1,2-phenylenebis(azanediyl))bis(cyclohepta-2,4,6-trien-1-one))做為控制劑來調控不同單體的可控/活性自由基聚合反應。Al(Tralen)及Tralen化合物對非共軛單體醋酸乙烯酯的聚合反應分別都有良好的控制效果。在反應過程中,聚醋酸乙烯酯的分子量隨著轉化率呈線性增長並和理論分子量相符,我們也藉由鏈延伸反應來確認尾端官能基的活性。此篇論文為首次利用鋁錯合物調控醋酸乙烯酯的研究。
同時,我們也嘗試以Al(Tralen)以及Tralen化合物來調控其他工業上常見的單體,如苯乙烯、乙烯正丁醚、丙烯酸甲酯、甲基丙烯酸甲酯、丙烯腈及N-乙烯基吡咯烷酮的自由基聚合反應,其中Tralen化合物對丙烯酸甲酯、N-乙烯基吡咯烷酮及丙烯腈有些許的控制效果。我們進一步以PVAc-Tralen做為大分子起始劑成功合成出PVAc-b-PMA嵌端共聚物。
Controlled/living radical polymerization (C/LRP) of vinyl acetate (VAc) was first achieved by the mediation using aluminum complexes of Al(tralen) and Tralen compounds (Tralen compounds is 2,2'-(1,2-phenylenebis (azanediyl))bis(cyclohepta-2,4,6-trien-1-one)). The living characters of VAc polymerization were demonstrated by the linear growth of molecular weight with monomer conversion, moderate molecular weight and chain extension experiment. In addition, Tralen compounds could also mediate the C/LRP of methyl acrylate (MA), acrylonitrile (AN) and N-vinyl pyrrolidone (NVP). Moreover, the block copolymer PVAc-b-PMA had been successfully obatined by using macro-initiator of PVAc-Tralen.
1. Stevens, M. P., Polymer Chemistry An Introduction. New York Oxford, 1999.
2. Odian, G., Principles of Polymerization. New York: 2004.
3. Colombani, D., Prog. Polym. Sci. 1997, 22(8), 1649–1720.
4. Szwarc, M.; Levy, M.; Milkovich, R., J. Am. Chem. Soc. 1956, 78, 2656–2657.
5 Chiefari, J.; Chong, Y.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P.; Mayadunne, R. T.; Meijs, G. F.; Moad, C. L.; Moad, G., Macromolecules 1998, 31, 5559-5562.
6. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T., Macromolecules 1995, 28, 1721-1723.
7. Georges, M. K.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer, G. K., Macromolecules 1993, 26, 2987-2988.
8. Wang, J-S.; Matyjaszewski, K., J. Am. Chem. Soc. 1995, 117, 5614–5615.
9. Moad, G.; Rizzardo, E.; Thang, S. H., Polymer 2008, 49, 1079–1131.
10. Ezio, R.; John, C.; Roshan, M.; Graeme, M.; San, T., Macromol. Symp. 2001, 174, 209–212.
11. Matyjaszewski, K.; Xia, J., Chem. Rev. 2001, 101, 2921-2990.
12. Moad, G., Rizzardo, E., Macromolecules 1995, 28, 8722–8728.
13. Hawker, C.J., Barclay, G.G., Dao, J., J. Am. Chem. Soc. 1996, 118, 11467–11471.
14. Braunecker, W. A.; Matyjaszewski, K., Prog. Polym. Sci. 2007, 32, 93-146.
15. Allan, E.N.; Perry, M. R.; Shaver, M. P., Prog. Polym. Sci. 2012, 20, 127-156.
16. Wayland, B. B.; Poszmik, G.; Mukerjee, S. L.; Fryd, M., J. Am. Chem. Soc. 1994, 116, 7943-7944.
17. Debuigne, A.; Caille, J.-R.; Jérôme, R., Angew. Chem.-Int. Edit. 2005, 117, 1125-1128.
18. Liao, C.-M.; Hsu, C.-C.; Wang, F.-S.; Wayland, B. B.; Peng, C.-H., Polym. Chem. 2013, 4, 3098-3104.
19. Peng, C.-H.; Scricco, J.; Li, S.; Fryd, M.; Wayland, B. B., Macromolecules 2008, 41, 2368-2373.
20. Flory, P. J., J. Am. Chem. Soc. 1937, 59, 241-253.
21. Debuigne, A.; Morin Aurélie, N.; Kermagoret, A.; Piette, Y.; Detrembleur, C.; Jérôme, C.; Poli, R., Chem.-Eur. J. 2012, 18, 12834-12844.
22. Hsu, C.-S.; Yang, T.-Y.; Peng, C.-H., Polym. Chem. 2014, 5, 3867-3875.
23. Kermagoret, A.; Debuigne, A.; Jérôme, C.; Detrembleur, C., Nat. Chem. 2014, 6, 179-187.
24. Yamago, S.; Miyazoe, H.; Yoshida, J., Tetrahedron Letters 1999, 44, 2339-2342.
25. Yamago, S.; Ukai, Y.; Matsumoto, A.; Nakamura, Y., J. Am. Chem. Soc. 2009, 131, 2000-2001.
26. Yamago, S.; Iida, K.; Yoshida, J., J. Am. Chem. Soc. 2002, 124, 13666-13667.
27. Kwak, Y.; Tezuka, M.; Goto, A.; Fukuda, T.; Yamago, S., Macromolecules 2007, 40, 1881-1885.
28. Kwak, Y.; Goto, A.; Fukuda, T.; Kobayashi, Y.; Yamago, S., Macromolecules 2006, 39, 4671-4679.
29. Spassky, N.; Wisniewski M.; Pluta, C.; Le Borgne, A., Macromol Chem Phys 1996, 197, 2627-2637.
30. Zhong, Z.; Dijkstra P. J.; Feijen, J., J Am Chem Soc. 2003;125, 11291-11298
31. Pappalardo, D.; Annunziata L.; Pellecchia, C., Macromolecules 2009; 42, 6056-6062.
32. Normand, M.; Dorcet V.; Kirillov E.; Carpentier J-F., Organometallics 2013, 32, 1694-1709.
33. Bian, S.; Abbina, S.; Lu, Z.; Kolodka, E.; Du, G., Organometallics 2014, 33, 2489-2495.
34. Hsieh, Y.-L.; Huang, N.; Lee G.-H.; Peng, C.-H., Polymer 2015, 72, 281-291.
35. Dai, S. Y.; Zhou, S. X.; Zhang, W.; Chen, C. L., Macromolecules 2016, 49, 8855.
36. Tan, C.; Xiong, S.; Chen, C. L., Macromolecules 2018, 51, 2043-2053.
37. Na, Y. N.; Dai, S. Y.; Chen, C. L., Macromolecules 2018, 51, 4040-4048.
38. Chen, M.; Chen, C. L., Angew. Chem. Int. Ed. 2018, 57, 3094–3098.
39. Chen, C. L., Nat. Rev. Chem. 2018, 2, 6-14.
40. Takeuch D.; Iwasawa T.; Osakada K., Macromolecules 2018, 51, 5048-5054.
41. Guo, L. H.; Dai, S. Y.; Sui, X. L.; Chen, C. L., ACS Catal. 2016, 6, 428.
42. Dai, S. Y.; Sui, X. L.; Chen, C. L., Angew. Chem. Int. Ed. 2015, 54, 9948.