研究生: |
張云慈 Chang, Yun-Tzu |
---|---|
論文名稱: |
直接成長奈米碳管於軟性基板之生物感測器 A Flexible Direct-Growth CNT Biosensor |
指導教授: | 游萃蓉 |
口試委員: |
劉承賢
徐琅 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 68 |
中文關鍵詞: | 生物感測器 、軟性基板 、奈米碳管 、電化學阻抗式 、人類血清白蛋白 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用化學氣相沉積法 (chemical vapor deposition, CVD),在400 °C之低溫下,直接成長奈米碳管於軟性基板 (聚醯亞胺, polyimide) 上製備生物感測器。接著在奈米碳管以外之區域,鍍上具有生物相容性之聚對二甲苯 (poly-para-xylylene, parylene),當作絕緣層,以利於往後製成可撓式生物感測器進行體內量測之應用。而奈米碳管表面之改質,會先以紫外線臭氧處理,再以1-(3-二甲氨基丙基)-3-乙基碳二亞胺 (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, EDC) 與N-羥基丁二酰亞胺 (N-hydroxysuccinimide, NHS) 作表面改質,使奈米碳管能與蛋白質接合。接著,依序固定人類血清白蛋白抗體 (anti-human serum albumin, AHSA)、小牛血清蛋白 (BSA) 阻斷劑,最後接合不同濃度之人類血清白蛋白 (human serum albumin, HSA) 來進行檢測。
在電性量測方面,本研究是利用電化學阻抗譜 (electrochemical impedance spectroscopy, EIS),在交流電下,量測不同濃度之人類血清白蛋白並加以量化。結果顯示,在2 * 10^-12 mg/ml至2 * 10^-1 mg/ml之人類血清白蛋白濃度間生物感測器之阻抗變化與濃度有高度關聯性,並且此生物感測器之偵測極限可達3 * 10^-11 mg/ml。
本研究利用電化學阻抗式機制,用以定量檢測人類血清白蛋白之濃度,並成功地驗證了將奈米碳管直接成長於軟性基板上作為生物感測器之可行性。此外,藉由化學氣相沉積法的製程,以及直接成長之奈米碳管的3D結構,使感測器可以利用較簡單之方式製備,並且有較佳之偵測極限,使此軟性感測器在未來之應用有極大之潛力。
In this study, a biosensor was fabricated by growing carbon nanotubes (CNTs) directly on polyimide flexible substrate at low temperatures (400 °C) with chemical vapor deposition (CVD) process. Thereafter, a biocompatible polymer (parylene) was coated on the surface area without CNTs as an insulator for future applications in flexible biosensors for in-vivo sensing.
The surface of CNTs was modified with functional groups by utilizing UV-ozone, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), and N-hydroxysuccinimide (NHS) treatment to improve the biocompatibility for the following conjugation of protein. Following that, the sensing surface was modified with anti-human serum albumin (AHSA), blocked by bovine serum albumin (BSA), and then conjugated with different concentrations of targeted human serum albumin (HSA) for HSA detection.
The electrical properties of the biosensors, applied with various HSA concentrations, were measured and quantified by using an electrochemical impedance spectroscopy (EIS) system under AC conditions. Results showed that the impedance change was well correlated to the HSA concentration from 2 * 10^-12 to 2 * 10^-1 mg/ml, and exhibited a detection limit of the 3 * 10^-11 mg/ml.
In summary, the feasibility of the CNTs flexible biosensor for HSA detection was demonstrated by utilizing electrochemical impedimetry to quantify human serum albumin concentration. Compared to other CNTs flexible biosensors, because of the employment of CVD process and the 3D structure of the direct-growth CNTs, the biosensor proposed in this work could be fabricated by a simpler process and provide a good detection limit. It shows a great potential for future application of wearable biosensor and implanting detection.
[1] Clark, L.C., Lyons, C., "Electrode Systems for Continuous Monitoring in Cardiovascular Surgery." Ann. NY. Acad. Sci., 1962, 102(1), 29-45.
[2] Iguchi, S., Kudo, H., Saito, T., Ogawa, M., Saito, H., Otsuka, K., Funakubo, A., Mitsubayashi, K., "A flexible and wearable biosensor for tear glucose measurement." Biomed. Microdevices, 2007, 9(4), 603-609.
[3] Lee, J.Y., Park, E.J., Lee, C.J., Kim, S.W., Pak, J.J., Min, N.K., "Flexible electrochemical biosensors based on O-2 plasma functionalized MWCNT." Thin Solid Films, 2009, 517(14), 3883-3887.
[4] McAlpine, M.C., Ahmad, H., Wang, D.W., Heath, J.R., "Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors." Nat. Mater., 2007, 6(5), 379-384.
[5] Iijima, S., "Helical Microtubules of Graphitic Carbon." Nature, 1991, 354(6348), 56-58.
[6] Iijima, S., Ichihashi, T., "Single-Shell Carbon Nanotubes of 1-Nm Diameter." Nature, 1993, 363(6430), 603-605.
[7] Guo, T., Nikolaev, P., Thess, A., Colbert, D.T., Smalley, R.E., "Catalytic Growth of Single-Walled Nanotubes by Laser Vaporization." Chem. Phys. Lett., 1995, 243(1-2), 49-54.
[8] Meyyappan, M., Delzeit, L., Cassell, A., Hash, D., "Carbon nanotube growth by PECVD: a review." Plasma Sources Sci. T, 2003, 12(2), 205-216.
[9] Dresselhaus, M.S., Dresselhaus, G., Saito, R., "Physics of Carbon Nanotubes." Carbon, 1995, 33(7), 883-891.
[10] Wallace, P.R., "The Band Theory of Graphite." Phys. Rev., 1947, 71(7), 476-476.
[11] Yu, B.Z., Long, N., Moussy, Y., Moussy, F., "A long-term flexible minimally-invasive implantable glucose biosensor based on an epoxy-enhanced polyurethane membrane." Biosens. Bioelectron., 2006, 21(12), 2275-2282.
[12] Richardson, R.R., Miller, J.A., Reichert, W.M., "Polyimides as Biomaterials - Preliminary Biocompatibility Testing." Biomaterials, 1993, 14(8), 627-635.
[13] Endo, T., Ozawa, S., Okuda, N., Yanagida, Y., Tanaka, S., Hatsuzawa, T., "Reflectometric detection of influenza virus in human saliva using nanoimprint lithography-based flexible two-dimensional photonic crystal biosensor." Sensor. Actuat. B-Chem., 2010, 148(1), 269-276.
[14] Lee, S.Y., Park, K.I., Huh, C., Koo, M., Yoo, H.G., Kim, S., Ah, C.S., Sung, G.Y., Lee, K.J., "Water-resistant flexible GaN LED on a liquid crystal polymer substrate for implantable biomedical applications." Nano Energy, 2012, 1(1), 145-151.
[15] Chiu, J.Y., Yu, C.M., Yen, M.J., Chen, L.C., "Glucose sensing electrodes based on a poly(3,4-ethylenedioxythiophene)/Prussian blue bilayer and multi-walled carbon nanotubes." Biosens. Bioelectron., 2009, 24(7), 2015-2020.
[16] Choi, B.G., Park, H., Park, T.J., Yang, M.H., Kim, J.S., Jang, S.Y., Heo, N.S., Lee, S.Y., Kong, J., Hong, W.H., "Solution Chemistry of Self-Assembled Graphene Nanohybrids for High-Performance Flexible Biosensors." Acs Nano, 2010, 4(5), 2910-2918.
[17] Gao, Q., Guo, Y.Y., Liu, J., Yuan, X.Q., Qi, H.L., Zhang, C.X., "A biosensor prepared by co-entrapment of a glucose oxidase and a carbon nanotube within an electrochemically deposited redox polymer multilayer." Bioelectrochemistry, 2011, 81(2), 109-113.
[18] Kim, J.P., Lee, B.Y., Hong, S., Sim, S.J., "Ultrasensitive carbon nanotube-based biosensors using antibody-binding fragments." Anal. Biochem., 2008, 381(2), 193-198.
[19] Luo, X.L., Morrin, A., Killard, A.J., Smyth, M.R., "Application of nanoparticles in electrochemical sensors and biosensors." Electroanal., 2006, 18(4), 319-326.
[20] Wang, J., "Carbon-nanotube based electrochemical biosensors: A review." Electroanal., 2005, 17(1), 7-14.
[21] Wang, J., Musameh, M., "Carbon nanotube/teflon composite electrochemical sensors and biosensors." Anal. Chem., 2003, 75(9), 2075-2079.
[22] Li, G., Liao, J.M., Hu, G.Q., Ma, N.Z., Wu, P.J., "Study of carbon nanotube modified biosensor for monitoring total cholesterol in blood." Biosens. Bioelectron., 2005, 20(10), 2140-2144.
[23] Erdem, A., Papakonstantinou, P., Murphy, H., "Direct DNA hybridization at disposable graphite electrodes modified with carbon nanotubes." Anal. Chem., 2006, 78(18), 6656-6659.
[24] Hsu, H.L., Teng, I.J., Chen, Y.C., Hsu, W.L., Lee, Y.T., Yen, S.J., Su, H.C., Yeh, S.R., Chen, H., Yew, T.R., "Flexible UV-Ozone-Modified Carbon Nanotube Electrodes for Neuronal Recording." Adv. Mater., 2010, 22(19), 2177-2181.
[25] Su, H.C., Chen, C.H., Chen, Y.C., Yao, D.J., Chen, H., Chang, Y.C., Yew, T.R., "Improving the adhesion of carbon nanotubes to a substrate using microwave treatment." Carbon, 2010, 48(3), 805-812.
[26] Kovtyukhova, N.I., Mallouk, T.E., Pan, L., Dickey, E.C., "Individual single-walled nanotubes and hydrogels made by oxidative exfoliation of carbon nanotube ropes." J. Am. Chem. Soc., 2003, 125(32), 9761-9769.
[27] Felten, A., Bittencourt, C., Pireaux, J.J., Van Lier, G., Charlier, J.C., "Radio-frequency plasma functionalization of carbon nanotubes surface O-2, NH3, and CF4 treatments." J. Appl. Phys., 2005, 98(7), 074308.
[28] Nakajima, N., Ikada, Y., "Mechanism of Amide Formation by Carbodiimide for Bioconjugation in Aqueous-Media." Bioconjugate Chem., 1995, 6(1), 123-130.
[29] Jiang, K.Y., Schadler, L.S., Siegel, R.W., Zhang, X.J., Zhang, H.F., Terrones, M., "Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation." J. Mater. Chem., 2004, 14(1), 37-39.
[30] Gao, Y., Kyratzis, I., "Covalent Immobilization of Proteins on Carbon Nanotubes Using the Cross-Linker 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide-a Critical Assessment." Bioconjugate Chem., 2008, 19(10), 1945-1950.
[31] Hiura, H., Ebbesen, T.W., Tanigaki, K., Takahashi, H., "Raman Studies of Carbon Nanotubes." Chem. Phys. Lett., 1993, 202(6), 509-512.
[32] Kragh-Hansen, U., Chuang, V.T.G., Otagiri, M., "Practical aspects of the ligand-binding and enzymatic properties of human serum albumin." Biol. Pharm. Bull., 2002, 25(6), 695-704.
[33] Ershler, B., "Investigation of Electrode Reactions by the Method of Charging-Curves and with the Aid of Alternating Currents." Discuss. Faraday. Soc., 1947, 1, 269-277.
[34] Sluytersrehbach, M., "Impedances of Electrochemical Systems - Terminology, Nomenclature and Representation .1. Cells with Metal-Electrodes and Liquid Solutions (Iupac Recommendations 1994)." Pure. Appl. Chem., 1994, 66(9), 1831-1891.
[35] Randles, J.E.B., "Kinetics of Rapid Electrode Reactions." Discuss. Faraday. Soc., 1947, 1, 11-19.