研究生: |
林曄生 Lin, Yeh-Sheng |
---|---|
論文名稱: |
Fabrication of Long-Range Ordered Nanocrystal Assembly and Supercrystals on Substrates Using Gold Nanocubes, Octahedra and Rhombic Dodecahedra as Building Blocks 用奈米金立方體、八面體及菱形十二面體在基板上製備大範圍且有序的奈米晶體排列和超級晶體 |
指導教授: |
黃暄益
Huang, Michael Hsuan-Yi |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 71 |
中文關鍵詞: | 排列 、奈米 、超級晶體 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
We have successfully fabricated long-range (~2.5 mm) ordered gold nanocube (~40 nm) and octahedra (~40 nm) assembled structures on the substrates at room temperature in moist condition. Gold nanocube (~40 nm) and rhombic dodecahedral nanocrystals (~40 nm) at high CTAC and particle concentrations can form respectively cubic or octahedral supercrystals on a wafer at 90 ºC in an environment with high humdity. Rhombic dodecahedral (~40 nm) and octahedral (~40 nm) nanocrystals at high CTAC and particle concentrations can assemble into platelike and rhombic dodecahedral supercrystal at room temperature under this humid condition. It may not form supercrystals using larger nanocubes (~75 nm), octahedral (~65 nm) and rhombic dodecahedral (~55 nm) nanocrystals. The key conditions for fabricating supercrystals are size–dependent, high surfactant and particle concentrations, and a sufficient long time for nanocrystal assembly.
We have found two types of gold nanocube assembly. At room temperature, each cube in the second layer sits right in the center of four cubes underneath, while nanocubes contact each other by face-to-face fashion at high temperature. There are three types of octahedral gold nanocrystal assembled structures. One packing structure is through faces contacting the substrate. Another assembled structure is with their edges contacting the underlying substrate. The third assembled structure is unstable in which the octahedra contact each other exactly face to face and five octahedra organize into a unit. No strong force exists between layer 1 and layer 2.
Rhombic dodecahedra (~40 nm) and ordered nanocube (~40 nm) assembly may form “hot spots” and have been shown to exhibit good SERS enhancement, while disordered nanocube and fused octahedral (~40 nm) structures do not. UV-vis spectra of gold nanocube assembly show absorption bands in the near-infrared region .
(1) Lin, X. M.; Jaeger, H. M.; Sorensen, C. M.; Klabunde, K. J. J. Phy. Chem. B 2001, 105, 3353.
(2) Chen, C. F.; Tzeng, S. D.; Chen, H. Y.; Lin, K. J.; Gwo, S. G. J. Am. Chem. Soc. 2008, 130, 824.
(3) Zhuang, Z.; Peng, Q.; Zhang, B.; Li, Y. J. Am. Chem. Soc. 2008, 130, 10482.
(4) Tao, A.; Sinsermsuksakul, P.; Yang, P. D. Nat. Nanotechnol. 2007, 2, 435.
(5) Ming, T.; Kou, X. S.; Chen, H. J.; Wang, T.; Tam, H.-L.; Cheah, K.-W.; Chen, J.-Y.; Wang, J. F. Angew. Chem., Int. Ed. 2008, 47, 9685.
(6) Lu, W. G.; Liu, Q. S.; Sun, Z. Y.; He, J. B.; Ezeolu C. D.; Fang, J. Y. J. Am. Chem. Soc. 2008, 130, 6983.
(7) Zhang, L. H.; Wu, J. J.; Liao, H. B.; Hou, Y. L.; Gao, S. Chem. Commun. 2009, 4378.
(8) Bishop, K. J. M.; Wilmer, C. E.; Soh, S.; Grzybowski, B. A. Small 2009, 5, 1600.
(9) Xie, S.; Zhou, X.; Han, X.; Kuang, Q.; Jin, M.; Jiang, Y.; Xie; Z.; Zheng, L. J. Phys. Chem. C. 2009, 113, 19107.
(10) Orendorff, C. J.; Gole, A.; Sau, T. K.; Murphy, C. J. Anal. Chem. 2005, 77, 3261.
(11) Mulvihill, M.; Tao, A.; Benjauthrit, K.; Arnold, J.; Yang, P. Angew. Chem., Int. Ed. 2008, 47, 6456.
(12) Chen, H. J.; Sun, Z. H.; Ni, W. H.; Woo, K. C.; Lin, H.-Q.; Sun L. D.; Yan, C. H.; Wang J. F. Small 2009, 5, 2111.
(13) Yang, S. C.; Kobori, H.; He, C. L.; Lin, M. S.; Chen, H. Y.; Li, C. C.; Kanehara, M.; Teranishi, T.; Gwo, S. G. Nano Lett. 2010, 10, 632.
(14) Mayer, K. M.; Lee, S.; Liao, H. W.; Rostro, B. C.; Fuentes, A.; Scully, P. T.; Nehl, C. L.; Hafner, J. H. ACS Nano 2008, 2, 687.
(15) Durr, N. J.; Larson, T.; Smith, D. K.; Korgel, B. A.; Sokolov, K.; Ben-Yakar, A. Nano Lett. 2007, 7, 941.
(16) Chon, J. W. M.; Bullen, C.; Zijlstra, P.; Gu, M. Adv. Funct. Mater. 2007, 17, 875.
(17) Mühlschlegel, P.; Eisler, H.-J.; Martin, O. J. F.; Hecht, B.; Pohl, D. W. Science 2005, 308, 1607.
(18) Wu, H. L.; Kuo, C. H.; Huang, M. H. Langmuir, 2010, 26, in press.
(19) Hu, H.; Larson, R. G. Langmuir 2005, 21, 3963.
(20) Whetten, R. L. Nat. Mater. 2006, 5, 259.
(21) Sau, T. K.; Murphy, C. J. Langmuir 2005, 21, 2923.
(22) Asakura, S.; Oosawa, F. J. Chem. Phys. 1954, 22, 1255.
(23) Chang, C.-C., Wu, H.-L., Kuo, C.-H.; Huang, M. H. Chem. Mater. 2008, 20, 7570.
(24) Thuy, N. T. B.; Yokogawa, R.; Yoshimura, Y.; Fujimoto, K.; Koyano, M.; Maenosono, S. Analyst 2010, 135, 595.
(25) Tayor, C. E.; Pemberton, J. E.; Goodman, G. G.; Schoenfisch, M. H. Appl. Spectrosc. 1999, 53, 1212.