研究生: |
黃昶文 Huang, Chang-Wen |
---|---|
論文名稱: |
做為電化學多巴胺感測之奈米壓印電極及CMOS感測電路 Electrochemical Dopamine Sensors Based on Nanoimprinted Microelectrodes with a CMOS detection Circuit |
指導教授: |
盧向成
Lu, Shiang-Cheng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | nanoimprint 、Dopamine 、Electrochemical Oxidation Reduction 、Parkinson’s disease 、IDAs |
外文關鍵詞: | 奈米壓印, 多巴胺, 氧化還原法, 帕金森氏症, 指叉電極 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文目的是利用奈米壓印製作一高感測度之感測電極晶片,並配合電
容式感測電路以實現具備即時監測、定量之低成本多巴胺(dopamine)感測晶
片。因為要達到高感測度需要將指叉狀電極(Interdigital Array
Electrodes ,IDA Electrdes)之間的間距縮小,為了將電極之製作成本降低
並減少製作時間,所以我們採用奈米壓印(Nanoimprint Lithography,NIL)技
術來製作奈米等級間距的電極, 並使用電化學氧化還原法(Oxidation
Reduction)來感測多巴胺。
為了電極間的絕緣,我們將電極製作在經電漿輔助化學氣相沉積(PECVD)
氮化矽之矽基板上,經由奈米壓印、氧氣電漿(O2 Plasma)蝕刻、鉻/金熱蒸鍍
(Evaporator)、Lift-off、黃光等步驟完成電極製作後,不同濃度之多巴胺
便可經由此電極晶片因電化學氧化還原產生不同之訊號電流,由儀器觀察電
流後便可由電流得到所量測之多巴胺濃度。最後在配合一互補式金屬氧化半
導體(Complementary Metal Oxide Semiconductor , CMOS)電路放大電流並
對電容充放電轉換成電壓訊號,在同樣充電時間下因不同電流得到不同電壓
訊號,藉此判讀多巴胺濃度。
藉由奈米壓印技術,我們得到一電極間距300 nm 的指叉狀電極,此電極
之感測度在多巴胺濃度0.5 μM 下,可產生1.26nA 訊號電流,配合放大電路,
理論上的多巴胺感測濃度最低可以到0.1μM
關鍵字:奈米壓印、多巴胺、氧化還原法、帕金森氏症、指叉電極。
[1] The Nobel Prize in Physiology or Medicine 2000.
http://nobelprize.org/nobel_prizes/medicine/laureates/2000/press.html
[2] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, “Imprint of sub-25
nm vias and trenches in polymers”, Appl. Phys. Lett.67, pp. 3114, 1995.
[3] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, “Imprint Lithography
with 25-Nanometer Resolution”, Science, vol.272,pp. 85, 1996.
[4] Stephen Y. Chou, Peter R. Krauss, and Preston J. Renstrom, “Nanoimprint
lithography”, J. Vac. Sci. Technol. B vol. 14, pp. 4129 , 1996.
[5] Stephen Y. Chou, Peter R. Krauss, Wei Zhang, Lingjie Guo, and Lei
Zhuang,"Sub-10 nm imprint lithography and applications",Journal of Vaccum
Science and Technology B,vol. 15 (6),pp. 2897-2904, 1997.
[6] H. C. Scheer and H. Schulz, “Problems of the nanoimprinting technique for
nanometer scale pattern definition,” Journal of Vacuum Science and Technology B,
vol. 16 (6), pp. 3917-3921, 1998.
[7] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. J. Choi, M. Wedlake,
T. Michaelson, S. V. Sreenivasan, J. Ekerdt, and C. G. Willson, “Step and Flash
Imprint Lithography: A New Approach to High-Resolution Patterning,”
Proceedings of the SPIE, vol. 3676, pp. 379-389, 1999.
.
[8] Xia, Y. and Whitesides, G.M., “Soft Lithography,” Angew. Chem. Int. Ed., vol. 37,
pp. 550-575, 1998.
[9] L. R. Bao, X. Cheng, X. D. Huang, L. J. Guo, S. W. Pang, and A. F. Yee,
“Nanoimprinting over topography and multilayer three-dimensional printing,”
Journal of Vacuum Science and Technology B, vol. 20, No. 6, pp. 2881-2886,
2002.
67
[10] Zhang LH, Teshima N, Hasebe T, Kurihara M, Kawashima T., “Flow-injection
determination of trace amounts of dopamine by chemiluminescence detection,”
Talanta vol. 50, pp. 677-683, 1999.
[11] I. C. Vieira and O. Fatibello-Filho, “Pectrophotometric determination of
methyldopa and dopamine in pharmaceutical formulations using a crude extract
of sweet potato root (Ipomoea batatas (L.) Lam.) as enzymatic source,” Talanta,
vol. 46, pp. 559-564, 1998
[12] P. Nagaraja, R.A. Vasantha and K.R. Sunitha, “A sensitive and selective
spectrophotometric estimation of catechol derivatives in pharmaceutical
preparations ,” Talanta, vol. 55, pp. 1039-1046, 2001.
[13] F. Musshoff, P. Schmidt, R. Dettmeyer, F. Priemer, K. Jachau, and B.
Madea,“Determination of dopamine and dopamine-derived (R)-/(S)-salsolinol
andnorsalsolinol in various human brain areas using solid-phase extraction and
gaschromatography/mass spectrometry,” Forensic Sci. Int., 113, pp. 359-366,
2000.
[14] T. J. Panholzer, J. Beyer, and K. Lictwald, “Coupled-column liquid
chromatographic analysis of catecholamines, serotonin, and metabolites in
human urine,” Clin Chem,45, pp. 262, 1999
[15] M. A. Raggi, C. Sabbioni, G. Casamenti, G. Gerra, N. Calonghi, and L. Masotti,
“Determination of catecholamines in human plasma by high-performance liquid
chromatography with electrochemical detection,” J. Chromatogr. B, 730:201,
1999. [16] B. A. Patel, M. Arundell, K. H. Parker, M. Yeoman, and D.
O’Hare, J. Chromatogr. B, 818, pp. 269, 2005.
[17] B. A. Patel, M. Arundell, K. H. Parker, M. Yeoman, and D. O’Hare, “Simple
and rapid determination of serotonin and catecholamines in biological tissue
using high-performance liquid chromatography with electrochemical detection,”
J. Chromatogr. B, 818, pp. 269-276, 2005.
[18] P. R. Roy, T. Okajima, and T. Ohsaka, “Simultaneous electroanalysis of
dopamine and ascorbic acid using poly (N,N-dimethylaniline)-modified
electrodes,” Bioelectrochem., 59, pp. 11-19, 2003.
68
[19] M. Sotomayor, A. A. Tanaka, L. T. Kubota, “Development of an amperometric
sensor highly selective for dopamine and analogous compounds determination
using bis(2,2 -Bipyridil)copper(II)chloride complex,” Electroanalysis, 15, pp.
787-796, 2003.
[20] T. J. Castilho, M. Sotomayor, and L. T. Kubota, “Amperometric biosensor based
on horseradish peroxidase for biogenic amine determinations in biological
samples,” J. Pharm Biomed Anal, 37(4), pp. 785-791, 2005.
[21] K. Miyazaki, G. Matsumoto, M. Yamada, S. Yasui, and H. Kaneko,
“Simultaneous voltammetric measurement of nitrite ion, dopamine, serotonin
with ascorbic acid on the GRC electrode,” Electrochim Acta, 44, pp. 3809-3820,
1999.
[22] J. M. Zen and P. J. Chen, “An ultrasensitive voltammetric method for dopamine
and catechol detection using clay-modified electrodes,” Electroanalysis, 10, pp.
12-15, 1998.
[23] J. M. Zen, W. M. Wang, and G. Ilangovan, “Adsorptive potentiometric stripping
analysis of dopamine on clay-modified electrode,” Anal Chim Acta, 372, pp.
315-321, 1998.
[24] R. L. Aponte, J. A. Diaz, A. A. Pereira, and V. G. Diaz, “Simple thin layer
chromatography method with fiber Optic remote sensor for fluorimetric
Quantification of Tryptophan and Related Metabolites,” J. Liq Chromatogr.
Relat. Technol. 19, pp. 687-698, 1996
[25] L. Gorton, E. Domınguez, “Electrocatalytic oxidation of NAD(P)H at
mediator-modified electrodes,” Reviews in Molecular Biotechnology 82, pp.
371-392, 2002
[26] J. Wang, M. Li, Z. Shi, N. Li and Z. Gu, “Electrocatalytic oxidation of
norepinephrine at a glassy carbon electrode modified with single wall carbon
nanotubes,” Electroanalysis, vol. 14, pp. 225-230, 2002
[27] M. D. Rubianes and G. A. Rivas, “Highly selective dopamine quantification using
a glassy carbon electrode modified with a melanin-type polymer,” Anal Chim Acta,
vol. 440, pp. 99-108, 2001.
[28] J. Wang and A. Walcarius, “Zeolite-modified carbon paste electrode for selective
onitoring of dopamine,” J. Electroanal. Chem. vol. 407, pp. 183-187, 1996.
69
[29] J. W. Mo and B. Ogorevc, “Simultaneous measurement of dopamine and
ascorbate at their physiological levels using voltammetric microprobe based on
overoxidized poly(1,2-phenylenediamine)-coated carbon fiber,” Anal. Chem.
vol. 73, pp. 1196-1202, 2001.
[30] S. M. Chen and K. C. Lin, “The electrocatalytic properties of biological
molecules using polymerized luminol film-modified electrodes,” J. Electroanal.
Chem. vol. 523, pp. 93-105, 2002.
[31] M Chicharro, A Sánchez, A Zapardiel, MD Rubianes, and G. Rivas, “Capillary
electrophoresis of neurotransmitters with amperometric detection at melanin-type
polymer-modified carbon electrodes,” Anal. Chim. Acta 523, pp. 185-191, 2004.
[32] R. Aguilar, M. M. Dávila, M.P. Elizalde, J. Mattusch and R. Wennrich,
“Capability of a carbon–polyvinylchloride composite electrode for the detection
of dopamine, ascorbic acid and uric acid,” Electrochim. Acta 49, pp. 851-859,
2004.
[33] S. M. Chen and K. T. Peng, “The electrochemical properties of dopamine,
epinephrine, norepinephrine, and their electrocatalytic reactions on cobalt(II)
hexacyanoferrate films,” J. Electroanal. Chem. vol. 547, pp. 179-189, 2003. [34]
F. Lisdat, U. Wollenberger, A. Makower, H. Hörtnagl, D. Pfeiffer, and F. W.
Scheller, Biosens Bioelectron. vol. 12, pp. 1199, (1997)
[35] Skoog, D. A.; Holler, F. J.; Nieman, T. A. “Principles of Instrumental nalysis,”5
th ed; Harcourt Brace College: USA, (1998).
[36] H. Suzuki, T. Hirakawa, S. Sakaki, and I. Karube, “An integrated three-electrode
system with a micromachined liquid-junction Ag/AgCl reference electrode,”
Anal. Chim. Acta, vol. 387, pp. 103-112, 1999.
[37] S.I. Park, S.B. Jun, S. Park, H.C. Kim and S.J. Kim, “Application of a new
Cl-plasma-treated Ag/AgCl reference electrode to micromachined glucose
sensor,” IEEE Sens. J. 3, pp. 267-273, 2003.
[38] R. Kurita, H. Tabei, Z. Liu, T. Horiuchi, and O. Niwa, “Fabri-cation and
electrochemical properties of an interdigitated array electrode in a
microfabricated wall-jet cell,” Sens. Actuators B, Chem., vol. B71, no. 1\-2,
pp.82-89, 2000.
70
[39] R. Thewes et al, “Sensor arrays for fully electronic DNA detection on CMOS,”
ISSCC, Digest of Tech. Papers, pp. 350-351, 2002.
[40] F. Hofmann, A. Frey, B. Holzapfl, M. Schienle, C. Paulus, P. Schindler-Bauer,
D.D.J. Kuhlmeier, J. Krause, R. Hintsche, E. Nebling, J. Albers, W. Gumbrecht,
K. Plehnert, G. Eckstein and R. Thewes, “Fully electronic DNA detection on a
CMOS chip: device and process issues.” Tech. Dig., Int. Electron Devices Meet.,
pp. 488-491, 2002.
[41] M. Paeschke, U. Wollenberger, T. Lisec, U. Schnakenberg and R. Hintsche,
“Highly sensitive electrochemical microsensors using submicrometer electrode
arrays,” Sens. Actuators, B 26-27, pp. 394-397, 1995.
[42] K. Aoki, M. Morita, O. Niwa, H. Tabei, “Quantitative analysis of reversible
diffusion-controlled currents of redox soluble species at interdigitated array
electrodes under steady-state conditions,” J. Electroanal. Chem. vol. 256, 269-282,
1988.
[43] M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. G. I. Ling, M. Keil and L.
Montelius, “Improving stamps for 10 nm level wafer scale nanoimprint
lithography”, Microelectronic Engineering .vol. 61-62, pp. 441. 2002.
[44] Nishino, T., M. Meguro, K. Nakamae, M.Matsushita, Y. Ueda. “The lowest
surfacefree energy based on -CF3 alignment”. Langmuir, vol.15, pp. 4321-4323,
1999.
[45] M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T.G.I. Ling, M. Keil, and L.
Montelius, “Improving stamps for 10 nm level wafer scale nanoimprint
lithography,” Microelectronic Engineering, vol. 61-62, pp. 441-448, 2002.
[46] 譚鴻志,(2008),”應用奈米壓印技術和自組裝硬式遮罩製作表面聲波元件之
研究”,暨南大學96年碩士論文。
[47] CH. Finder, M. Beck, J. Seekamp, K. Pfeiffer, P. Carlberg, I. Maximov, F. Reuther,
E. L. Sarwe, S. Zankovich, J. Ahopelto, L. Montelius,C. Mayer and M.
Sotomayor Torres” Fluorescence microscopy for quality control in nanoimprint
lithography”, Microelectronic Engineering,vol. 67-68, pp.623-628, 2003.
71
[48] 詹豐林,(2008),”使用電化學法配合互補式金屬氧化半導體電路之多巴胺定
量感測器”,清華大學96年碩士論文。