簡易檢索 / 詳目顯示

研究生: 黃政偉
Huang, Zheng-Wei
論文名稱: 一個採用時差測距且具備kTC雜訊消除及固定圖像雜訊抑制效果的互補式金氧半導體深度影像感測器
A Time of Flight (ToF) CMOS Depth Image Sensor with kTC Noise Cancellation and Fixed Pattern Noise (FPN) Suppression
指導教授: 謝志成
Hsieh, Chih-Cheng
口試委員: 邱進峰 博士
陳新 教授
鄭桂忠 教授
謝志成 教授
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 117
中文關鍵詞: 深度影像感測器時差測距圖像雜訊kTC雜訊
外文關鍵詞: Time of Flight (ToF), Fixed Pattern Noise (FPN), kTC Noise
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文描述了一個使用飛行時間法(ToF)並採用連續性波長調變的方式可應用於三維影像實現之深度影像感測器,利用信號等化以及多次子積分的技術來達到雜訊抑制和背景光抑制範圍延展的效果。一個64×128的影像感測器以此架構技術實現後,其量測的結果在影像之表現有67%固定模式雜訊(FPN)抑制以及300μV隨機雜訊消除的效果,同時具備有30fps的幀率(frame/sec)使其成為一個具有相當雜訊抑制能力之三維深度影像感測器。此影像感測器包含了兩種像素陣列作為兩種不同像素架構之性能比較,整個系統周邊包含以每條欄方向共用之交換電容式差動放大器、取樣電路,以及控制訊號讀出之欄、列編碼器,像素間距為10μm,每個像素包含有9個電晶體,填充因子為24.8%,使用了TSMC 0.11μm CIS 1P4M影像感測器製程,晶片大小為2.2mm×2.5mm。
    此論文所貢獻之創新技術以概述如上,首先是提出了一個創新且具有kTC雜訊消除(RNC)及FPN壓抑技術的訊號等效讀出方法,利用四電晶體畫素等化器使其在多次相位訊號積分過後,將兩個訊號儲存點電壓等效至同一電位的方式,取代傳統類似3T-APS將訊號積分點拉回重置電壓的偽相關二次取樣方法,此技術可確實消除了在不同訊號環境之應用下所造成的重置電壓雜訊,藉此改善影像的均勻度,並且可省去了後端訊號處理所需相關二次取樣電路,事實上在此傳統架構下CDS並無法確實達到消除雜訊的效果,第二為利用多次子積分的方式來達到比較高的背景光抑制能力,第三為採用欄共用式運算放大器,用於補償在傳統主動式畫素影像感測器中因像素內部之源級隨偶器所造成的增益損耗,並且在欄訊號讀出前採用了訊號取樣的電路,藉此達到在幀影像訊號讀取時間內,節省了90%的放大器功率損耗,達到省電的效果。


    This thesis describes a Time of flight (ToF) technology with continuous wave modulation scheme applied in three domination (3D) CMOS imager sensors. Using integration signal equalization and sub-integration technology achieve noise cancellation and background light suppression (BLS) ability extension. A prototype 64×128 pixel imager employed these schemes experimentally achieve 67% fixed-pattern-noise (FPN), 300μV kTC noise cancelled and 30 fps in the 2D image mode. The imager implements two different pixels array compared between the image performances. The full chip system consists of their associated column parallel differential switched-capacitor OPAMP, S&H circuits, column and row decoders, enabling a pixel pitch of 10μm with nine transistors in a pixel, 24.8% fill factor in a TSMC 0.11μm CIS process, the chip size is 2.2mm×2.5mm.
    The innovations are contributed by this thesis, leading to the performance outlined above. First, a novel 4T in-pixel equalizer with reset noise cancellation (RNC) scheme which equal the signal after multiple integrated in two storage points. Compare to the 3T-like signal readout in conventional ToF imager which the integration points will be reset to the high voltage in the reset signal sample phase and therefore inject the thermal noise. The new technology cancels the reset noise caused by the reset MOSFET threshold variation and kTC noise. This operation improves the uniformity of imager at different exposure environments. The commonly readout circuits of the correlated double sampling (CDS) circuit can be omitted; in fact the CDS is pseudo operation in noise cancellation. Second, a sub-integration method for giving a wide dynamic range of background light suppressed ability. Third, the fully differential switched-capacitor OPAMP with sample and hold circuits are used in column-wise circuits for compensating the gain loss caused by the source follower in conventional active pixel sensors and reduced about 90% power consumption from the column shared OPAMP in the signal readout period, reaching good power efficiency.

    ABSTRACT 2 CONTENTS 6 LIST OF FIGURES 9 LIST OF TABLES 12 CHAPTER 1 INTRODUCTION 13 1.1 MOTIVATION 13 1.2 THESIS CONTRIBUTION 14 1.3 THESIS ORGANIZATION 15 CHAPTER 2 BACKGROUND INFORMATION 17 2.1 ARCHITECTURE SELECTION 18 2.1.1 Active Pixel Sensor 18 2.1.2 Three Dimensional (3-D) Depth Image Sensor 21 2.1.2.1 Stereoscopic Vision Sensor 22 2.1.2.2 Structured Light Sensor 24 2.1.2.3 Time of Flight (ToF) Sensor 27 2.2 THE CONSIDERATIONS OF TOF IMAGER 33 2.2.1 Noise 33 2.2.2 Dynamic Range of Detectable Distance 37 2.2.3 Saturation 40 2.2.3.1 Full-Well Capacity of Floating Diffusion 40 2.2.3.2 Background Light Incident 41 2.2.4 Modulation contrast 43 2.3 SUMMARY 44 CHAPTER 3 INDIRECT SIGNAL INTEGRATION USED IN TOF IMAGER 46 3.1 PULSE MODULATION (TIME DOMAIN) OPERATION 46 3.2 CONTINUOUS WAVE MODULATION (PHASE DOMAIN) OPERATION 51 3.3 BACKGROUND LIGHT CANCELING TECHNOLOGY 55 3.4 SUMMARY 61 CHAPTER 4 PROTOTYPE DESIGN OF EQUAL-RESET TOF DEPTH IMAGE SENSOR 64 4.1 SYSTEM ARCHITECTURE OF TOF IMAGER 64 4.1.1 Pixel Circuit 65 4.1.2 Read Controller 67 4.1.3 Column readout circuit 69 4.1.4 Column-Parallel Switched Fully Differential Operational Amplifier 70 4.1.5 Row and Column Selector 72 4.1.6 Output Buffer 73 4.2 OPERATION OF EQUAL RESET TOF PIXELS 74 4.2.1 Reset Stage 74 4.2.2 Integrated Stage 76 4.2.3 Equalized with Noise Canceling Completed Stage 78 4.3 SNR BOOST IN STRONG INCIDENT LIGHT 79 4.4 FULL CHIP OPERATION 82 4.4.1 Timing Diagram 82 4.4.2 Simulation Results 83 4.5 IR LED MODULATION MODULE DESIGN 88 4.6 SUMMARY 92 CHAPTER 5 MEASUREMENT RESULTS 93 5.1 IMAGER DIE 93 5.2 MEASUREMENT ENVIRONMENT SETUP 95 5.3 PHOTO-CHARGES CONVERSION GRAPH 97 5.4 KTC & FIXED PATTERN NOISE MEASUREMENT 99 5.5 SUB-INTEGRATION (SI) MEASUREMENTS 100 5.6 SAMPLE IMAGES 101 5.7 SUMMARY 105 CHAPTER 6 CONCLUSIONS 106 6.1 SUMMARY 106 6.2 FUTURE WORK 107 BIBLIOGRAPHY 109

    [1] D. Piatti and F. Rinaudo, “SR-4000 and CamCube3.0 Time of Flight (ToF) Cameras: Tests and Comparison,” in Proc. Remote Sens., pp.1069-1089, Apr. 2012
    [2] S. Hussmann, T. Ringbeck, and B. Hagebeuker, “A performance review of 3D TOF vision systems in comparison to stereo vision systems,” in Stereo Vision, A. Bhatti, ed. (InTech), pp. 103–120, 2008.
    [3] Penne J, Höller K, Stürmer M, Schrauder T, Schneider A, Engelbrecht R, Feussner H, Schmauss B, Hornegger J, “Time-of-Flight 3-D Endoscopy,” in Proc. Med Image Comput Comput Assist Interv., pp467 -474, 2009
    [4] S.J. Kim, S.W. Han, B. Kang, K. Lee, J.D.K. Kim, C.Y. Kim, “A Three-Dimensional Time-of-Flight CMOS Image Sensor With Pinned-Photodiode Pixel Structure,” IEEE Electron Device Letters, pp. 1272-1274, 2010
    [5] S.J. Kim, D.K. Kim, S.W. Han, B. Kang, K. Lee, C.Y. Kim, “A 640×480 Image Sensor with Unified Pixel Architecture for 2D/3D Imaging in 0.11μm CMOS,” in IEEE VLSI Circuits (VLSIC), 2011 Symposium on. , pp.92-93, 2011
    [6] S.J. Kim, J.D.K. Kim, B. Kang, K. Lee, “A CMOS Image Sensor Based on Unified Pixel Architecture With Time-Division Multiplexing Scheme for Color and Depth Image Acquisition,” IEEE J. Solid-State Circuits, vol.47, no.11, pp.2834-2845, Nov. 2012
    [7] M. Davidovic, M. Hofbauer, H. Zimmermann, “A 33 × 25 μm² Low-Power Range Finder,” IEEE International Symposium on Circuits and Systems (ISCAS), pp.922-925, 2012
    [8] M. Davidovic, M. Hofbauer, K. Schneider-Hornstein, H. Zimmermann, “High dynamic range background light suppression for a TOF distance measurement sensor in 180nm CMOS,” IEEE Sensors, pp.359-362, 2011
    [9] O. Elkhalili, O.M. Schrey, W. Ulfig, W. Brockherde, B.J. Hosticka, P. Mengel, L. Listl, “A 64×8 Pixel 3-D CMOS Time Of Flight Image Sensor for Car Safety Applications,” IEEE Solid-State Circuits Conference, ESSCIRC 2006. Proceedings of the 32nd European, pp. 568-571, Sep. 2006
    [10] M.L. Hafiane, W. Wagner, Z. Dibi, O. Manck, “Depth Resolution Enhancement Technique for CMOS Time-of-Flight 3D image Sensors,” IEEE Sensors Journal, vol. 12, no. 6, pp. 2320-2327, Jun. 2012
    [11] G. Zach, H. Zimmermann, “A 2×32 Range-Finding Sensor Array with Pixel-Inherent Suppression of Ambient Light up to 120klx,” IEEE Solid-State Circuits Conference - Digest of Technical Papers, ISSCC 2009, pp. 352-353, Feb. 2009
    [12] G. Zach, M. Davidovic, H. Zimmermann, “A 16×16 Pixel Distance Sensor With In-Pixel Circuitry That Tolerates 150 klx of Ambient Light” IEEE Journal of Solid-State Circuits, vol. 45, no. 7, pp. 1345–1353, July 2010
    [13] G. Zach, M. Davidovic, H. Zimmermann, “Dual-Line Distance Sensor with On-Chip Phase Generator and Suppression of Ambient Light,” IEEE International Symposium on Circuits and Systems (ISCAS), pp. 905–908, May/June 2010
    [14] M. Davidovic, G. Zach, K. Schneider-Hornstein, H. Zimmermann, “Range finding sensor in 90nm CMOS with bridge correlator based background light suppression,” IEEE Solid-State Circuits Conference, ESSCIRC 2010, pp. 298-301, Sep. 2010
    [15] L. Pancheri, N. Massari, M. Perenzoni, M. Malfatti, D. Stoppa, “A QVGA-Range Image Sensor Based on Buried- Channel Demodulator Pixels in 0.18μm CMOS with Extended Dynamic Range,” IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp.394-396 Feb. 2012
    [16] D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, L. Gonzo, “An 80×60 Range Image Sensor Based on 10μm 50MHz Lock-In Pixels in 0.18μm CMOS,” IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp.406-407, Feb. 2010
    [17] J. Cho, J. Choi, S.J. Kim, J. Shin, S. Park, J.D.K. Kim, E. Yoon, “A 5.9μm-Pixel 2D/3D Image Sensor with Background Suppression over 100klx,” in Proc. IEEE International Symposium on VLSI Circuits, pp. C6-C7, June 2013.
    [18] T.Y. Lee, Y.J. Lee, D.K. Min, J. Lee, Y.G. Jin, Y. Park, and C. Chung, “Dark Current Suppression during High Speed Photogate Modulation for 3D ToF Imaging Pixel,” in Proc. International Image Sensor Workshop, June 2011
    [19] T.Y. Lee, Y.J. Lee, D.K. Min, S.H. Lee, W.H. Kim, S.H. Kim, J.K. Jung, “A 192×108 pixel ToF-3D image sensor with single-tap concentric-gate demodulation pixels in 0.13μm technology,” Electron Devices Meeting (IEDM), 2011 IEEE International Date of Conference, pp. 8.7.1-8.7.4, Dec. 2011.
    [20] J. Ohta, Smart CMOS Imager Sensors and Applications, CRC Press
    [21] P. J. W. Noble, “Self-scanned silicon image detector arrays,” IEEE Trans. Electron Devices, vol. ED-15, no. 4, pp. 202-209, Apr. 1968
    [22] A. El Gamal and H. Eltoukhy, “Cmos image sensors,” IEEE Circuits Devices Mag., vol. 21, no. 3, pp. 6–20, May/Jun. 2005
    [23] P. Noble, “Self-scanned image detector arrays,” IEEE Trans. Electron Devices, vol. 15, no. 4, pp. 202–209, Apr. 1968
    [24] E. Fossum, “Active pixel sensors: Are ccd’s dinosaurs?” in Proc. SPIE Charged-Coupled Devices and Solid State Optical Sensors III, vol. 1900, pp. 30–39, 1993
    [25] R. Guidash, T.-H. Lee, P. Lee, D. Sackett, C. Drowley, M. Swenson, L. Arbaugh, R. Hollstein, F. Shapiro, and S. Domer, “A 0.6 μm cmos pinned photodiode color imager technology,” in Proc. Int. Electron Devices Meeting Tech. Dig., pp. 927–929, Dec. 1997
    [26] J.-E. Eklund, C. Svensson, and A. Astrom, “Vlsi implementation of a focal plane image processor-a realization of the near-sensor image processing concept,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 4, no. 3, pp. 322–335, Sep. 1996
    [27] C. Niclass, A. Rochas, P.A. Besse, E., Charbon, “Toward a 3-D Camera Based on Single Photon Avalanche Diodes,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, no. 4, pp. 796-802, July/Aug. 2004
    [28] C. Niclass, M. Soga, H. Matsubara, S. Kato, M. Kagami, “A 100m Range 10Frame/s 340×96-Pixel Time-of-Flight Depth Sensor in 0.18μm CMOS,” IEEE J. Solid-State Circuits, vol. 48, no. 2, pp. 559-572, Feb. 2013
    [29] C. Niclass, M. Soga, H. Matsubara, M. Ogawa, M. Kagami, “A 0.18μm CMOS SoC for a 100-m-Range 10-Frame/s 200×96 Pixel Time-of-Flight Depth Sensor,” IEEE J. Solid-State Circuits, vol. 49, no. 1, pp. 315-330, Jan. 2014
    [30] C. Niclass, M. Soga, H. Matsubara, M. Ogawa, M. Kagami, “A 0.18µm CMOS SoC for a 100m-range 10fps 200×96-pixel time-of-flight depth sensor,” IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 488–489, Feb. 2013
    [31] S. Cova, A. Longoni, A. Andreoni, “Towards picosecond resolution with single‐photon avalanche diodes,” IEEE Review of Scientific Instruments, vol. 52, no. 3, pp. 408-412, Mar. 1981
    [32] L.W. Huang, “A 1.8V Readout Integrated Circuit with Adaptive Transimpedance Control Amplifier for IR Focal Plane Arrays,” National Tsing Hua University, Oct. 2011
    [33] R. Lange, “3D Time-of-Flight Distance Measurement with Custom Solid-State Image Sensors in CMOS/CCD-Technology,” University-Gesamthochschule Siegen, Sep. 2000
    [34] K. Yasutomi, T. Usui, S.M. Han, T. Takasawa, K. Kagawa, S. Kawahito, “A 0.3mm-Resolution Time-of-Flight CMOS Range Imager with Column-Gating Clock-Skew Calibration,” IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 132-133, Feb. 2014
    [35] S.M. Han, T. Takasawa, T. Akahori, K. Yasutomi, K. Kagawa, S. Kawahito, “A 413×240-Pixel Sub-Centimeter Resolution Time-of-Flight CMOS Image Sensor with In-Pixel Background Canceling Using Lateral-Electric-Field Charge Modulators,” IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 130-131, Feb. 2014
    [36] D. Stoppa, N. Massari, L. Pancheri, M. Malfatti, M. Perenzoni, L. Gonzo, “A Range Image Sensor Based on 10-μm Lock-In Pixels in 0.18-μm CMOS Imaging Technology,” IEEE Journal of Solid-State Circuits, vol. 46, no. 1, pp. 248-258, Jan. 2011
    [37] S.J. Kim, “Performance Evaluation of Pinning Potential Adjustment in Two-Dimensional/Three-Dimensional Image Sensor,” IEEE Electron Device Letters, vol. 33, no. 10, pp. 1426-1428, Oct. 2011
    [38] T. Ushinaga, I.A. Halin, T. Sawada, S. Kawahito; M. Homma; Y. Maeda, “A QVGA-size CMOS time-of-flight range image sensor with background light charge draining structure,” in Proc. SPIE 6056, Three-Dimensional Image Capture and Applications VII, Jan. 2006
    [39] W. Kim, Y. Wang, I. Ovsiannikov, S.H. Lee, Y. Park, C. Chung, E. Fossum, “A 1.5Mpixel RGBZ CMOS Image Sensor for Simultaneous Color and Range Image Capture,” 2012 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 392–394, Minneapolis, Feb. 2012
    [40] O. Sgrott, D. Mosconi, M. Perenzoni, G. Pedretti, L. Gonzo, D. Stoppa, “A 134-Pixel CMOS Sensor for Combined Time-of-Flight and Optical Triangulation 3-D Imaging,” IEEE Journal of Solid-State Circuits, vol. 45, no. 7, pp. 1354-1364, Sep. 2009
    [41] D. Stoppa, L. Viarani, A. Simoni, L. Gonzo, M. Malfatti, G. Pedretti, “A 50×30-pixel CMOS Sensor for TOF-based Real Time 3D Imaging,” IEEE 2005 Workshop on Charge-Coupled Devices and Advanced Image Sensors, pp. 230-233, June 2005
    [42] S.B. Gokturk, H. Yalcin, C. Bamji, “A Time-Of-Flight Depth Sensor – System Description, Issues and Solutions” Computer Vision and Pattern Recognition Workshop, pp. 35, 2004
    [43] A. Nemecek, K. Oberhauser, H. Zimmermann, “Distance Measurement Sensor With PIN-Photodiode and Bridge Circuit,” IEEE Sensors Journal, vol. 6, no. 2, pp. 391-397, Apr. 2009
    [44] T. Sawada, K. Ito, M. Nakayama, Shoji Kawahito, “TOF Range Image Sensor Using A Range-Shift Technique,” IEEE Sensors, pp. 1390-1393, Oct. 2008
    [45] Shoji Kawahito, I.A. Halin, T. Ushinaga, T. Sawada, M. Homma, Y. Maeda, “A CMOS Time-of-Flight Range Image Sensor with Gates-on-Field-Oxide Structure,” IEEE Sensors Journal, vol. 7, no. 12, pp. 1578-1586, Dec. 2007
    [46] M.L. Hafiane, R. Blachnitz, O. Manck, Z. Dibi, W. Wagner, “In-pixel Implementation of an Area-efficient Analog- Signal-Processing for CMOS-3D Image Sensor,” IEEE Semiconductor Conference Dresden (SCD), pp. 1-4, Sept. 2011
    [47] O. Elkhalili, O.M. Schrey, P. Mengel, M. Petermann, W. Brockherde, B.J. Hosticka, “A 4×64 Pixel CMOS Image Sensor for 3-D Measurement Applications,” IEEE Journal Solid-State Circuits, vol.39, no.7, pp.1208-1212, July 2004
    [48] R. Jeremias, W. Brockherde, G. Doemens, B. Hosticka, L. Listl, P. Mengel, “A CMOS Photosensor Array for 30 Imaging Using Pulsed Laser,” IEEE International Solid-State Circuits Conference, 2001. Digest of Technical Papers, pp.252-253, Feb. 2011
    [49] L. Viarani, D. Stoppa, L. Gonzo, M. Gottardi, A. Simoni, “A CMOS Smart Pixel for Active 3-D Vision Applications,” IEEE Sensors Journal, vol.4, no.1, pp.145-152, Feb. 2004
    [50] F. Mufti, R. Mahony, “Statistical analysis of signal measurement in time-of-flight cameras,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 66, no. 5, pp. 720–731, Sep. 2011.
    [51] W. Kazmi, S. Foix, G. Alenya, “Plant Leaf Imaging using Time of Flight Camera under Sunlight, Shadow and Room Conditions,” IEEE International Symposium on Robotic and Sensors Environments (ROSE), pp. 192-197, Nov. 2012
    [52] T. Möller, H. Kraft, J. Frey, M. Albrecht, R. Lange, “Robust 3D Measurement with PMD Sensors,” in Proc. 1st Range Imaging Research Day at ETH Zürich, 2005.
    [53] M. Davidovic, M. Hofbauer, K. Schneider-Hornstein, H. Zimmermann, “High Dynamic Range Background Light Suppression for a TOF Distance Measurement Sensor in 180nm CMOS,” IEEE Sensors, pp. 359- 362, Oct. 2011
    [54] K.V. Gioux S, R. Ciocan, “A low-cost, linear, DC – 35 MHz, high-power LED driver for continuous wave (CW) and fluorescence lifetime imaging (FLIM),” in Proc. SPIE, 2008

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE