研究生: |
房巧雯 Fang, Chiao-Wen |
---|---|
論文名稱: |
高解析度液靜壓定位平台之系統整合與測試 System Integration and Testing for a High Resolution Positioning Hydrostatic Platform |
指導教授: |
林士傑
Lin, Shih-Chieh |
口試委員: |
宋震國
黃華志 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 液靜壓軸承 、定位解析度 |
外文關鍵詞: | Hydrostatic bearing, Positioning resolution |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著超精密機械產業的迅速發展與高解析度滑動平台的定位需求,許多精密工具機台採用液靜壓軸承作為線性傳動元件。和一般滾動軸承相比,液靜壓軸承提供較佳的動態剛性來抑制振動,亦避免軸承的滯滑及磨耗現象,而幾乎無移動解析度的限制更是符合本研究的目標所需。
本研究希望提升液靜壓滑動平台的定位解析度。為達成此目標,將透過系統架設與整合,完成整個液靜壓滑動平台系統的搭建,並針對液靜壓滑動平台進行測試。利用閉迴路控制來彌補線性系統的位置誤差,以期達到更佳的加工精度,進而實現精密定位控制的目的。
在本論文中,由於精密平台對安裝精度要求較高,將於平台架設期間,利用千分表針對滑軌與各部件之間的平行度進行量測。接著測試液靜壓滑動平台的移動性能,並調整控制參數,最後由實驗確認液靜壓滑動平台的定位性能表現。
With the rapid development of the ultra-precision machinery industry, the need of high-resolution sliding platforms is increased. Many high precision tool machines used the hydrostatic slide ways or hydrostatic bearing as transmission components. Compared with general rolling bearings, the hydrostatic bearings provide better dynamic stiffness to suppress vibration, and also avoid bearing stick slip and wear. It is of interest to set-up and test a high-resolution hydrostatic sliding platform and improve the positioning resolution of the hydrostatic sliding platform. In order to achieve this goal, a hydrostatic sliding platform system was designed and setup, and tests and experiments were carried out on the hydrostatic sliding platform.
In this paper, the design and test of the hydrostatic sliding platform were presented. Test adjustments are then performed to study the performance of the design. The experiments are then conducted to evaluate the performance of the platform. Conclusions are then made based on these results.
[1] P. P. A. McKeown,“High precision manufacturing and the British
economy”,James Clayton Lecture, pp. 147-165, 1986.
[2] 2017 年1-12 月台灣工具機出口速報, 檢自URL, 2018.
[3] A.M Loeb and H.C Rippel, ”Determination of optimum proportions
for hydrostatic bearings”, ASLE Transactions, pp.241-247, 1958.
[4] M.K Ghosh and B.C Majumdart, ”Design of multirecess hydrostatic
oil journal bearings”, Tribology International, pp.73-78, 1980.
[5] M. S. A. Kotilainen, ”Design and Manufacturing of Modular Self-
Compensating Hydrostatic”, Massachusetts Institute of Technology,
2000.
[6] R. Bassani and B. Piccigallo, ”Hydrostatic Lubrication”, Amsterdam,
AE: Elsevier, 1992.
[7] W. B.,Rowe, ”Hydrostatic, Aerostatic, and Hybrid Bearing Design.”,
Waltham: Butterworth-Heinemann., 2012.
[8] M. S. A. Kotilainen, ”Design and manufacturing of modular selfcompensating
hydrostatic journal bearings”, Doctoral dissertation,
Massachusetts Institute of Technology, 2000.
[9] A. Harnoy, ”Bearing Design in Machinery: Engineering Tribology and
Lubrication”, New York: Marcel Dekker, 2003.
[10] B. Bhushan, ”Introduction to Tribology”, New York: John Wiley and
Sons, 2002.
[11] B. J. Hamrock, R. S. Steven and B. O. Jacobson, ”Fundamentals of
Fluid Film Lubrication”, New York, NY: Marcel Dekker, 2004.
[12] N. R. Kane, ”Surface self-compensated hydrostatic bearings”, Doctoral
dissertation, Massachusetts Institute of Technology, MIT, 1999.
[13] W.B. Rowe, ”Hydrostatic, Aerostatic, and Hybrid Bearing Design”,
Elsevier, pp. 275-314, 2012.
[14] S. Yoshimoto, T. Kume , T. Shitara, ”Axial load capacity of waterlubricated
hydrostatic conical bearings with spiral grooves for high
speed spindles”, ELSEVIER, pp. 331-338, 1998.
[15] M. Moshin, ”The Use of Controlled Restrictors for Compensating Hydrostatic
Bearing”, Third International Conference on Machine Tool
Design Research, 1963.
[16] K. K. Tan, T. H. Lee, H. F. Dou, S. J. Chin, S. Zhao, ”Precision
motion control with disturbance observer for pulsewidth-modulateddriven
permanent-magnet linear motors”, IEEE Transactions on Magnetics,
Vol. 39, 2003.
[17] W. Gao, S. Dejima, H. Yanai, K. Katakura, S. Kinyono, Y. Tomita,
”A surface motor-driven planar motion stage integrated with an XYθZ
surface encoder for precision positioning”, Precision Engineering, Vol.
28, pp.329-337, 2004.
[18] Z. Z. Liu, F. L. Luo, M. A. Rahman, ”Robust and precision motion
control system of linear-motor direct drive for high-speed X-Y table
positioning mechanism”, IEEE Transactions on Industrial Electronics,
Vol. 52, 2005.
[19] P. Sriyotha, K. Nakamoto, M. Sugai, K. Yamazaki, ”Development of
5-Axis Linear Motor Driven Super-Precision Machine”, Precision Engineering,
Vol.55, pp.381-384, 2006.
[20] S.K. Ro, S. Kim, Y. Kwak, C. H. Park, ”A linear air bearing stage with
active magnetic preloads for ultraprecise straight motion”, Precision
Engineering, Vol.34, pp.186-194, 2010.
[21] K. Erkorkmaz, ”Precision machine tool X–Y stage utilizing a planar
air bearing arrangement”, CIRP Annals, Vol.59, pp.425-428, 2010.
[22] J. Lei, X. Chen, T. Yan, ”Modeling and analysis of a 3-DOF Lorentzforce-
driven planar motion stage for nanopositioning”, Mechatronics,
Vol.20, pp.553-565, 2010.
[23] 蔡國銘, 謝忠祐, 陳奕錦, 曹堃培, ” 雙軸液靜壓車床之精度與加工
特性”, 技術學刊, Vol.28, pp.263-268, 2013.
[24] 盧建勳, 陳美勇, ” 鐵芯式永磁同步伺服線性馬達應用於高精密度
定位平台之運動控制與設計”, 國立台灣師範大學機電科技研究
所, 2012.
[25] 周昭旭, 柯志隆, ” 多軸微細加工機與高階數控系統之整合及其性
能測試”, 國立雲林科技大學機械工程系碩士班, 2008.
[26] 簡汶昇, 修芳仲, ” 使用線性馬達研製長行程奈米定位平台”, 國立
台灣科技大學機械工程研究所, 2011.
[27] 陳昭亮, 陳政賢, ” 精微工具機控制系統之研究”, 國立中興大學機
械工程研究所, 2015.
[28] M.C. Potter, D.C. Wiggert, B.H. Ramadan., ”Mechanics of Fluids SI
Version”, Cengage Learning, pp.287, 2011.
[29] Uddeholm Corrax,”CUTTING DATA RECOMMENDATIONS”,
2019.
[30] C. F. Cheung, W. B. Lee,”Study of Factors Affecting the Surface Quality
in Ultra-Precision Diamond Turning”, Materials and Manufacturing
Processes, Vol.15, pp.481-502, 2000.