簡易檢索 / 詳目顯示

研究生: 徐君達
Hsu, Chun-Ta
論文名稱: 以氧化銦錫作為電極之全透明氮化鋁鎵/氮化鎵高電子遷移率電晶體之研究
Study on Fully Transparent AlGaN/GaN High Electron Mobility Transistors with Indium Tin Oxide Electrodes
指導教授: 黃智方
Huang, Chih-Fang
口試委員: 吳添立
Wu, Tian-Li
盧向成
Lu, Shiang-cheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 55
中文關鍵詞: 氮化鎵氧化銦錫透明元件高電子遷移率電晶體
外文關鍵詞: Gallium Nitride, indium tin oxide, transparent device, high electron mobility transistor
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,我們成功製作全透明的高電子遷移率電晶體(high electron mobility transistor, HEMT)。相較於傳統的非透明Ni/Au閘極HEMT,我們以矽離子佈植的方式形成N型歐姆接觸來達到元件透明的目的。為了確保全透明HEMT的光穿透率,我們將傳統Ni/Au閘極HEMT常使用的Ti/Al/Ti/Au合金改為氧化銦錫(indium tin oxide, ITO)薄膜,閘極的部分也從Ni/Au金屬閘極改為ITO蕭特基式閘極。
    實驗中我們發現在經過600°C的高溫熱退火後,ITO薄膜的阻值得到改善並擁有相當高的光穿透率。全透明HEMT在閘極偏壓於1V時,其最大飽和電流值可以達到 223 mA/mm。試片在可見光波段中具有70%以上的光穿透率,而場效電子遷移率(field effect mobility)最大值可以達到860 cm2/ V·s。以上結果展現出全透明HEMT在光電、顯示與感測器技術上具有相當的發展潛力。


    In this thesis, we demonstrate a fully transparent AlGaN/GaN high electron mobility transistor. Comparing with the conventional non-transparent Ni/Au gate HEMT, N-type ohmic contact by using silicon ion implantation is created for transparency. To ensure the high transmittance of the fully transparent HEMT, Ti/Al/Ti/Au alloyed metal stack and Ni/Au metal gate which are commonly used in conventional Ni/Au gate HEMT are both replaced by indium tin oxide (ITO) layer.
    After 600°C annealing treatment, the ITO layer shows an improved resistivity and a high transmittance. The maximum output current is 223 mA/mm at a gate voltage of 1V. The transmittance of the fabricated chip is over 70% in the visible spectrum range, and the field effect mobility is as high as 860 cm2/ V·s. These results indicate the great potential of the fully transparent HEMT for optoelectronics, display technologies and sensing.

    摘要 I Abstract II 目錄 III 圖目錄 V 表目錄 VII 第一章 序論 1 1.1前言 1 1.2 氮化鎵材料特性 2 1.2.1 自發性極化 2 1.2.2 壓電極化 3 1.2.3 氮化鎵/氮化鋁鎵異質磊晶結構 4 1.3 文獻回顧 5 1.3.1 薄膜電晶體 5 1.3.2 氮化鎵/氮化鋁鎵高電子遷移率電晶體 7 1.3.3 氧化銦錫透明導電膜 8 1.3.4 矽離子佈植之歐姆接觸 10 1.4 研究方向與架構 11 1.4.1 研究方向 11 1.4.2 論文架構 12 第二章 原理簡介與元件製程 13 2.1 氧化銦錫的功能 13 2.2 關鍵製程 13 2.2.1矽離子摻雜模擬 13 2.2.2 ITO濕式蝕刻 15 2.3 全透明HEMT(FT-HEMT)製程 16 2.3.1蝕刻對準記號(Mask 1) 17 2.3.2源/汲極區域矽離子佈植(Mask 2) 20 2.3.3元件隔離(Mask 3) 21 2.3.4 ITO濕式蝕刻(Mask 4) 22 2.4 傳統HEMT製程 23 2.4.1 蝕刻對準記號(Mask 1) 23 2.4.2 元件隔離(Mask 3) 23 2.4.3 源/汲極金屬(Mask 8) 23 2.4.4 閘極金屬(Mask 7) 25 2.5 ITO閘極HEMT製程 26 2.5.1 蝕刻對準記號(Mask 1) 26 2.5.2 元件隔離(Mask 3) 26 2.5.3 閘極ITO濕式蝕刻(Mask 7) 26 2.5.4 源/汲極金屬(Mask 8) 26 2.6 元件尺寸與結構圖 27 第三章 量測與結果分析 31 3.1 TLM測試結構 31 3.2 電流-電壓特性量測與分析 36 3.2.1 HEMT直流特性 36 3.2.2 HEMT變溫直流特性 39 3.3 電子遷移率相關量測與分析 42 3.3.1 電容-閘極偏壓量測 43 3.3.2 轉移電導特性 44 3.3.3 場效電子遷移率 46 3.4 光穿透率量測 47 3.5 透明元件整理與比較 49 第四章 結論與未來工作 50 參考文獻 52

    [1]Y. Y. Wong, Y. S. Chiu, T. T. Luong, T. M. Lin, Y. T. Ho, Y. C. Lin and E. Y. Chang, “Growth and fabrication of AlGaN/GaN HEMT on SiC substrate,” International Conference on Semiconductor Electronics, pp. 729–732, Sep 2012.
    [2]O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” Journal of Applied Physics, vol. 85, no. 6, pp. 3222–3233, Mar 1999.
    [3]O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, and L. F. Eastman, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” Journal of Applied Physics, vol 87, pp.334–344, 2000.
    [4]F. Sacconi, A. D. Carlo, P. Lugli, and H. Morkoç, “Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs,” IEEE Transactions on Electron Devices, Vol. 48, NO. 3, pp. 450–457, 2001.
    [5]J. Kanicki, F. R. Libsch, J. Griffith, and R. Polastre, “Performance of thin hydrogenated amorphous silicon thin-film transistors,” Journal of Applied Physics, vol.69, pp. 2339–2345, 1991.
    [6]C.-S. Yang, L. L. Smith, C. B. Arthur, and G. N. Parsons, “Stability of low-temperature amorphous silicon thin film transistors formed on glass and transparent plastic substrates,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol.18, pp. 683–689, 2000.
    [7]H. Gleskova, S. Wagner, W. Soboyejo, and Z. Suo, “Electrical response of amorphous silicon thin-film transistors under mechanical strain,” Journal of Applied Physics, vol.92, pp. 6224–6229, 2002.
    [8]C. H. Lee, N. P. Papadopoulos, M. Sachdev, and W. S. Wong, “Effect of mechanical strain on hydrogenated amorphous silicon thin-film transistors and compensation circuits on flexible substrates,” IEEE Transactions on Electron Devices, vol. 64, no. 5, pp. 2016–2021, 2017.
    [9]R. L. Hoffman, B. J. Norris, and J. F. Wager, “ZnO-based transparent thin-film transistors,” Appl. Phys. Lett., vol. 82, pp. 733–735, 2003.
    [10]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, pp. 488–492, 2004
    [11]H. C. Cheng, C. F. Chen, and C. Y. Tsay, “Transparent ZnO thin film transistor fabricated by sol-gel and chemical bath deposition combination method,” Appl. Phys. Lett., vol. 90, no. 1, pp. 012113-1–012113-3, 2007.
    [12]E. N. Dattoli, Q. Wan, W. Guo, Y. Chen, X. Pan, and W. Lu, “Fully transparent thin-film transistor devices based on SnO2 nanowires,” Nano Lett., vol. 7, no. 8, pp. 2463–2469, 2007.
    [13]M. A. Khan, J. N. Kuznia, J. M. Van Hove, N. Pan and J. Carter, “Observation of a two-dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN-AlxGa1−xN heterojunctions,” Appl. Phys. Lett., vol. 60, no. 24, pp. 3027–3029, 1992.
    [14]M. A. Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, “High electron mobility transistor based on a GaN-AlxGa1−xN heterojunction,” Appl. Phys. Lett., vol. 63, pp. 1214–1215, 1993.
    [15]L. Shen, S. Heikman, B. Moran, R. Coffie, N. Q. Zhang, D. Buttari, I. P. Smorchkova, S. Keller, S. P. DenBaars and U. K. Mishra, “AlGaN/AlN/GaN high power microwave HEMT,” Electron Devices Letters, vol. 22, no. 10, pp. 457–459, 2001.
    [16]S. Mizuno,Y. Ohno, S. Kishimoto, K. Maezawa and T. Mizutani, “Large gate leakage current in AlGaN/GaN high electron mobility transistors,” Jpn. J. Appl. Phys., vol. 41, part 1, no. 8, pp. 5125–5126, Aug 2002.
    [17]W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura, “Recessed gate structure approach toward normally off high voltage AlGaN/GaN HEMT for power electronics applications,” IEEE Trans. Electron Devices, vol. 53, no. 2, pp. 356–362, Feb. 2006.
    [18]A. H. Ali, Z. Hassan, and A. Shuhaimi, “Enhancement of optical transmittance and electrical resistivity of post-annealed ITO thin films RF sputtered on Si,” Applied Surface Science, vol. 443, pp. 544–547, 2018.
    [19]C. T. Lee, C. H. Fu, C. D. Tsai, and W. Lin, “Performance characterization of InGaP schottky contact with ITO transparent electrodes,” Journal of Electronic Materials, vol.27, no. 9, pp. 1017–1021, 1998.
    [20]K.H. Choia, J. Y. Kima, Y. S. Lee, and H. J. Kim, “ITO/Ag/ITO multilayer films for the application of a very low resistance transparent electrode,” Thin Solid Films, vol. 341, pp. 152–155, 1999.
    [21]Y. Hu, X. Diao, C. Wang, W. Hao, and T. Wang, “Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering,” Vacuum, vol. 75, pp. 183–188, 2004.
    [22]S. Song, T. Yang, J. Liu, Y. Xin, Y. Li, and S. Han, “Rapid thermal annealing of ITO films,” Applied Surface Science, vol. 257, pp. 7061–7064, 2011.
    [23]N. Ren, P. Shi, Z. Sheng, K. Zhong, H. Du, Q. Shan, J. Zhu, T. Li, and S. Ban, “Up to 98.2% super transmittance and precise modification of wavelength band in vein-like Ag in ITO/Ag/AZO sandwich structure,” Solar Energy, vol. 203, pp. 240–246, 2020.
    [24]J. C. Zolper, J. Han, R. M. Biefeld, S. B. Van Deusen, W. R. Wampler, D. J. Reiger, S. J. Pearton, J. S. Williams, H. H. Tan, R. F. Karlicek, Jr., and R. A. Stall, “Si-implantation activation annealing of GaN up to 1400°C,” Journal of Electronic Materials, vol. 27, no. 4, pp. 179–184, 1998.
    [25]D. Qiao, Z. F. Guan, J. Carlton, and S. S. Lau, “Low resistance ohmic contacts on AlGaN/GaN structures using implantation and the ‘‘advancing’’ Al/Ti metallization,” Appl. Phys. Lett., vol. 74, pp. 2652–2654, 1999.
    [26]Y. Irokawa, O. Fujishima, T. Kachi, and Y. Nakano, “Electrical activation characteristics of silicon-implanted GaN,” Journal of Applied Physics, vol. 97, 083505, 2005.
    [27]H. Yu, L. McCarthy, S. Rajan, S. Keller, S. Denbaars, “Ion implanted AlGaN–GaN HEMTs with nonalloyed ohmic contacts,” IEEE Electron Device Letters, vol. 26, no. 5, pp. 283–285, May 2005.
    [28]J. D. Hwang, G. H. Yang, W. T. Chang, C. C. Lin, R. W. Chuang, and S. J. Chang, “A novel transparent ohmic contact of indium tin oxide to n-type GaN,” Microelectron. Eng., vol. 77, no. 1, pp. 71–75, Jan. 2005.
    [29]Y. Pei, K. J. Vampola, Z. Chen, R. Chu, S. P. DenBaars and U. K. Mishra, "AlGaN/GaN HEMT with a transparent gate electrode," IEEE Electron Device Letters, vol. 30, no. 5, pp. 439–441, May 2009.
    [30]O. Aktas, Z. F. Fan, S. N. Mohammad, A. E. Botchkarev, and H. Morkoç, “High temperature characteristics of AlGaN/GaN modulation doped fieldeffect transistors,” Appl. Phys. Lett., vol.69, pp. 3872–3874, 1996.
    [31]S. Arulkumaran, T. Egawa, H. Ishikawa, and T. Jimbo, “High-temperature effects of AlGaN/GaN high-electron-mobility transistors on sapphire and semi-insulating SiC substrates,” Appl. Phys. Lett., vol. 80, pp. 2186–2188, 2002.
    [32]J. Wei, S. Liu, B. Li, X. Tang, Y. Lu, C. Liu, M. Hua, Z. Zhang, G. Tang, and K. J. Chen, “Low on-resistance normally-off GaN double-channel metal–oxide–semiconductor high-electron-mobility transistor,” IEEE Electron Device Letters, vol. 36, no. 12, pp. 1287–1290, Dec. 2015.
    [33]J. Chen, W. Yi, T. Kimura, S. Takashima, M. Edo, and T. Sekiguchi, “Cathodoluminescene study of Mg implanted GaN: the impact of dislocation on Mg diffusion” Applied Physics Express, vol. 12, 051010, 2019.
    [34]H. -C. Chiu, C. -H. Liu, H. -L. Kao, H.-C. Wang, C. -R. Huang, C.-W. Chiu, C.-T. Chen, and K.-J. Chang, “Low-Mg out-diffusion of a normally off p-GaN gate high-electron-mobility transistor by using the laser activation technique,” Materials Science in Semiconductor Processing, vol. 117, 105166, 2020.
    [35]I. C. Cheng, A. Z. Kattamis, K. Long, J. C. Sturm, and S. Wagner, “Self-aligned amorphous-silicon TFTs on clear plastic substrates,” IEEE Electron Device Lett., vol. 27, no. 3, pp. 166–168, Mar. 2006.
    [36]K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor,” Science, vol. 300, no. 5623, pp. 1269-1272, May 2003.
    [37]S. Masuda, K. Kitamura, Y. Okumura, and S. Miyatake, “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties,” J. Appl. Phys., vol. 93, no. 3, pp. 1624–1630, Feb. 2003.
    [38]D. C. Paine, B. Yaglioglu, Z. Beiley, and S. Lee, “Amorphous IZO-based transparent thin film transistors,” Thin Solid Films, vol. 516, no. 17, pp. 5894–5898, Jul. 2008.
    [39]G. J. Lee, J. Kim, J. H. Kim, S. M. Jeong, J. E. Jang, and J. Jeong, “High performance, transparent a-IGZO TFTs on a flexible thin glass substrate,” Semicond. Sci. Technol., vol. 29, no.3, 0350003, Jan. 2014.

    QR CODE