研究生: |
楊宸鳴 Yang, Chen-Ming |
---|---|
論文名稱: |
分析 PA0262, PA1511 與 PA5266,三個可能與綠膿桿菌PAO1第六型分泌系統(二)相關的 VgrG 蛋白 Characterization of PA0262, PA1511, and PA5266, Three Putative VgrGs Associated with the Type VI Secretion System-II in Pseudomonas aeruginosa PAO1 |
指導教授: |
張晃猷
Chang, Hwan-You |
口試委員: |
高茂傑
賴怡琪 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 綠膿桿菌 、第六型分泌系統 、VgrG |
外文關鍵詞: | pseudomonas aeruginosa, type six secretion system, VgrG |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
綠膿桿菌為一種常見院內感染病原菌,也常在肺纖維性囊腫病患造成慢性感染。革蘭氏陰性菌為雙層膜結構,因此演化出不同型的分泌系統以將作用蛋白輸送到胞外。綠膿桿菌 PAO1 株,具有三套第六型分泌系統的基因叢集,稱為 T6SS-I, -II, 與 -III。 VgrG 為第六型分泌系統主要的分泌蛋白,其結構與 T4 噬菌體的細胞穿刺構造非常相似。 PAO1 具有十個 vgrG 基因,其中何者與 T6SS-II 相關並不清楚。經由與其他綠膿桿菌基因體的比對,我們認為 PA1511、 PA0262 與 PA5266,很可能是 T6SS-II 的 VgrG 蛋白。利用 InterproScan 預測蛋白保留區域,發現 PA1511 與 PA0262 的羧基端具有一段功能未知的延伸區域,可能用以與真核細胞進行交互作用。本研究首先將帶有 vgrG 的表現載體轉染至真核細胞中,但發現細胞並沒有顯著的死亡。本研究也構築了 PA1511、 PA0262 與 PA5266 等 vgrG 基因剔除株,發現 vgrG 不會影響綠膿桿菌的表型,包括移動能力、酵素活性與菌落形態等。在模式植物之感染試驗中, vgrG 剔除株 ΔPA1511 與 ΔPA5266 的傷口範圍較野生株造成的為小。在免疫轉漬實驗中發現,以 M8 培養的野生株,會分泌蛋白 PA5266 與 Hcp2 至培養液中。本研究雖然未能直接證明這三個 VgrG 與第六型分泌系統相關,但提供了研究這些 VgrG 蛋白的重要基礎。
Pseudomonas aeruginosa is a common nosocomial pathogen causing acute infections in immunocompromised patients and chronic infections in cystic fibrosis patients. Gram-negative bacteria, especially pathogens, have developed diversified secretion systems to deliver effector molecules through their complex double membrane structure. P. aeruginosa contains three gene clusters named T6SS-I, -II, and -III that can encode a type VI secretion system. The valine-glycine repeat protein G (VgrG), structurally similar with the complex puncturing device of T4 bacteriophage, is one of the proteins secreted by type VI secretion systems P. aeruginosa PAO1 contains 10 vgrG-like genes. While PA0091, PA0095, and PA2685 have been shown to be the VgrGs of T6SS-I, the VgrG associated with T6SS-II is less clear. Based on comparative genomic analysis, either PA1511, PA0262, or PA5266 could be the VgrG associated with T6SS-II. Protein domain analysis revealed that PA1511 and PA0262 contain a functionally unknown extended segment in the C-terminal region. Further cytotoxicity assay of PA1511 and PA0262 by transfecting the genes into cultured HCT-8 cells failed to detect any significant effects. This study then constructed the vgrG deletion strains and examined their biological properties. Among commonly assayed phenotypes, no significant effect could be observed resulting from the vgrG deletions. In contrast, cytotoxicity and virulence to Chinese cabbage leaves are reduced in the ΔPA1511 and ΔPA5266 mutants. Finally, this study demonstrated that PA5266 and Hcp2 are secreted when PAO1 was grown in M8 minimal medium. Although the exact VgrGs secreted by T6SS-II and their functions remain to be determined, this study has established a strong basis for future analysis of the three VgrGs.
1. Gerlach, R.G. and M. Hensel, Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int J Med Microbiol, 2007. 297(6): p. 401-15.
2. Cossart, P. and P.J. Sansonetti, Bacterial invasion: the paradigms of enteroinvasive pathogens. Science, 2004. 304(5668): p. 242-8.
3. Merrell, D.S. and S. Falkow, Frontal and stealth attack strategies in microbial pathogenesis. Nature, 2004. 430(6996): p. 250-6.
4. Pukatzki, S., et al., Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin. Proc Natl Acad Sci U S A, 2007. 104(39): p. 15508-13.
5. Abdallah, A.M., et al., Type VII secretion--mycobacteria show the way. Nat Rev Microbiol, 2007. 5(11): p. 883-91.
6. Pym, A.S., et al., Recombinant BCG exporting ESAT-6 confers enhanced protection against tuberculosis. Nat Med, 2003. 9(5): p. 533-9.
7. Delepelaire, P., Type I secretion in gram-negative bacteria. Biochim Biophys Acta, 2004. 1694(1-3): p. 149-61.
8. Duong, F., A. Lazdunski, and M. Murgier, Protein secretion by heterologous bacterial ABC-transporters: the C-terminus secretion signal of the secreted protein confers high recognition specificity. Mol Microbiol, 1996. 21(3): p. 459-70.
9. Cornelis, G.R., The type III secretion injectisome. Nat Rev Microbiol, 2006. 4(11): p. 811-25.
10. Rosqvist, R., et al., Functional conservation of the secretion and translocation machinery for virulence proteins of Yersiniae, Salmonellae and Shigellae. EMBO J, 1995. 14(17): p. 4187-95.
11. Tam, V.C., et al., A type III secretion system in Vibrio cholerae translocates a formin/spire hybrid-like actin nucleator to promote intestinal colonization. Cell Host Microbe, 2007. 1(2): p. 95-107.
12. Martinez, J.G., et al., Membrane-targeted synergistic activity of docosahexaenoic acid and lysozyme against Pseudomonas aeruginosa. Biochem J, 2009. 419(1): p. 193-200.
13. Segal, G. and H.A. Shuman, How is the intracellular fate of the Legionella pneumophila phagosome determined? Trends Microbiol, 1998. 6(7): p. 253-5.
14. Cianciotto, N.P., Type II secretion: a protein secretion system for all seasons. Trends Microbiol, 2005. 13(12): p. 581-8.
15. Johnson, T.L., et al., Type II secretion: from structure to function. FEMS Microbiol Lett, 2006. 255(2): p. 175-86.
16. Saier, M.H., Jr., Protein secretion and membrane insertion systems in gram-negative bacteria. J Membr Biol, 2006. 214(2): p. 75-90.
17. Desvaux, M., N.J. Parham, and I.R. Henderson, Type V protein secretion: simplicity gone awry? Curr Issues Mol Biol, 2004. 6(2): p. 111-24.
18. Mougous, J.D., et al., A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science, 2006. 312(5779): p. 1526-30.
19. Williams, S.G., et al., Vibrio cholerae Hcp, a secreted protein coregulated with HlyA. Infect Immun, 1996. 64(1): p. 283-9.
20. Das, S. and K. Chaudhuri, Identification of a unique IAHP (IcmF associated homologous proteins) cluster in Vibrio cholerae and other proteobacteria through in silico analysis. In Silico Biol, 2003. 3(3): p. 287-300.
21. Bladergroen, M.R., K. Badelt, and H.P. Spaink, Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. Mol Plant Microbe Interact, 2003. 16(1): p. 53-64.
22. Parsons, D.A. and F. Heffron, SciS, an icmF homolog in Salmonella enterica serovar Typhimurium, limits intracellular replication and decreases virulence. Infect Immun, 2005. 73(7): p. 4338-45.
23. Sheahan, K.L., C.L. Cordero, and K.J. Satchell, Identification of a domain within the multifunctional Vibrio cholerae RTX toxin that covalently cross-links actin. Proc Natl Acad Sci U S A, 2004. 101(26): p. 9798-803.
24. Pukatzki, S., et al., Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Natl Acad Sci U S A, 2006. 103(5): p. 1528-33.
25. Potvin, E., et al., In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. Environ Microbiol, 2003. 5(12): p. 1294-308.
26. Seth, S., A study of the A-1A-2BO blood group system and ABO(H) secretion in six endogamous groups of Punjab. Am J Phys Anthropol, 1968. 29(3): p. 387-95.
27. Hood, R.D., et al., A type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe, 2010. 7(1): p. 25-37.
28. Russell, A.B., et al., Type VI secretion delivers bacteriolytic effectors to target cells. Nature, 2011. 475(7356): p. 343-7.
29. MacIntyre, D.L., et al., The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci U S A, 2010. 107(45): p. 19520-4.
30. Blondel, C.J., et al., Comparative genomic analysis uncovers 3 novel loci encoding type six secretion systems differentially distributed in Salmonella serotypes. BMC Genomics, 2009. 10: p. 354.
31. Sana, T.G., et al., The second type VI secretion system of Pseudomonas aeruginosa strain PAO1 is regulated by quorum sensing and Fur and modulates internalization in epithelial cells. J Biol Chem, 2012. 287(32): p. 27095-105.
32. Bonemann, G., A. Pietrosiuk, and A. Mogk, Tubules and donuts: a type VI secretion story. Mol Microbiol, 2010. 76(4): p. 815-21.
33. Chow, J. and S.K. Mazmanian, A pathobiont of the microbiota balances host colonization and intestinal inflammation. Cell Host Microbe, 2010. 7(4): p. 265-76.
34. Liu, H., et al., Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum. PLoS Pathog, 2008. 4(6): p. e1000093.
35. Robinson, J.B., et al., Evaluation of a Yersinia pestis mutant impaired in a thermoregulated type VI-like secretion system in flea, macrophage and murine models. Microb Pathog, 2009. 47(5): p. 243-51.
36. Jani, A.J. and P.A. Cotter, Type VI secretion: not just for pathogenesis anymore. Cell Host Microbe, 2010. 8(1): p. 2-6.
37. Aschtgen, M.S., M.S. Thomas, and E. Cascales, Anchoring the type VI secretion system to the peptidoglycan: TssL, TagL, TagP... what else? Virulence, 2010. 1(6): p. 535-40.
38. Schwarz, S., R.D. Hood, and J.D. Mougous, What is type VI secretion doing in all those bugs? Trends Microbiol, 2010. 18(12): p. 531-7.
39. Aschtgen, M.S., et al., SciN is an outer membrane lipoprotein required for type VI secretion in enteroaggregative Escherichia coli. J Bacteriol, 2008. 190(22): p. 7523-31.
40. Das, S., et al., Involvement of in vivo induced icmF gene of Vibrio cholerae in motility, adherence to epithelial cells, and conjugation frequency. Biochem Biophys Res Commun, 2002. 295(4): p. 922-8.
41. Enos-Berlage, J.L., et al., Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Mol Microbiol, 2005. 55(4): p. 1160-82.
42. Weber, B., et al., Type VI secretion modulates quorum sensing and stress response in Vibrio anguillarum. Environ Microbiol, 2009. 11(12): p. 3018-28.
43. Zhang, L., et al., Pseudomonas aeruginosa tssC1 links type VI secretion and biofilm-specific antibiotic resistance. J Bacteriol, 2011. 193(19): p. 5510-3.
44. Boyer, F., et al., Dissecting the bacterial type VI secretion system by a genome wide in silico analysis: what can be learned from available microbial genomic resources? BMC Genomics, 2009. 10: p. 104.
45. VanRheenen, S.M., G. Dumenil, and R.R. Isberg, IcmF and DotU are required for optimal effector translocation and trafficking of the Legionella pneumophila vacuole. Infect Immun, 2004. 72(10): p. 5972-82.
46. Sexton, J.A., et al., Legionella pneumophila DotU and IcmF are required for stability of the Dot/Icm complex. Infect Immun, 2004. 72(10): p. 5983-92.
47. Schlieker, C., et al., ClpV, a unique Hsp100/Clp member of pathogenic proteobacteria. Biol Chem, 2005. 386(11): p. 1115-27.
48. Bonemann, G., et al., Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J, 2009. 28(4): p. 315-25.
49. Zheng, J. and K.Y. Leung, Dissection of a type VI secretion system in Edwardsiella tarda. Mol Microbiol, 2007. 66(5): p. 1192-206.
50. Jobichen, C., et al., Structural basis for the secretion of EvpC: a key type VI secretion system protein from Edwardsiella tarda. PLoS One, 2010. 5(9): p. e12910.
51. Ballister, E.R., et al., In vitro self-assembly of tailorable nanotubes from a simple protein building block. Proc Natl Acad Sci U S A, 2008. 105(10): p. 3733-8.
52. Aksyuk, A.A., et al., The structure of gene product 6 of bacteriophage T4, the hinge-pin of the baseplate. Structure, 2009. 17(6): p. 800-8.
53. Mesyanzhinov, V.V., et al., Molecular architecture of bacteriophage T4. Biochemistry (Mosc), 2004. 69(11): p. 1190-202.
54. Leiman, P.G., et al., Three-dimensional rearrangement of proteins in the tail of bacteriophage T4 on infection of its host. Cell, 2004. 118(4): p. 419-29.
55. Leiman, P.G., et al., Morphogenesis of the T4 tail and tail fibers. Virol J, 2010. 7: p. 355.
56. Mattinen, L., et al., Host-extract induced changes in the secretome of the plant pathogenic bacterium Pectobacterium atrosepticum. Proteomics, 2007. 7(19): p. 3527-37.
57. Rossmann, M.G., et al., The bacteriophage T4 DNA injection machine. Curr Opin Struct Biol, 2004. 14(2): p. 171-80.
58. Hachani, A., et al., Type VI secretion system in Pseudomonas aeruginosa: secretion and multimerization of VgrG proteins. J Biol Chem, 2011. 286(14): p. 12317-27.
59. Ma, A.T., et al., Translocation of a Vibrio cholerae type VI secretion effector requires bacterial endocytosis by host cells. Cell Host Microbe, 2009. 5(3): p. 234-43.
60. Leiman, P.G., et al., Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin. Proc Natl Acad Sci U S A, 2009. 106(11): p. 4154-9.
61. Suarez, G., et al., A type VI secretion system effector protein, VgrG1, from Aeromonas hydrophila that induces host cell toxicity by ADP ribosylation of actin. J Bacteriol, 2010. 192(1): p. 155-68.
62. Brooks, T.M., et al., Lytic activity of the Vibrio cholerae type VI secretion toxin VgrG-3 is inhibited by the antitoxin TsaB. J Biol Chem, 2013. 288(11): p. 7618-25.
63. Filloux, A., A. Hachani, and S. Bleves, The bacterial type VI secretion machine: yet another player for protein transport across membranes. Microbiology, 2008. 154(Pt 6): p. 1570-83.
64. Sarris, P.F., et al., In silico analysis reveals multiple putative type VI secretion systems and effector proteins in Pseudomonas syringae pathovars. Mol Plant Pathol, 2010. 11(6): p. 795-804.
65. Mikkelsen, H., R. McMullan, and A. Filloux, The Pseudomonas aeruginosa reference strain PA14 displays increased virulence due to a mutation in ladS. PLoS One, 2011. 6(12): p. e29113.
66. Govan, J.R. and V. Deretic, Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev, 1996. 60(3): p. 539-74.
67. Jesaitis, A.J., et al., Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J Immunol, 2003. 171(8): p. 4329-39.
68. Stover, C.K., et al., Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 2000. 406(6799): p. 959-64.
69. Lau, G.W., et al., The Drosophila melanogaster toll pathway participates in resistance to infection by the gram-negative human pathogen Pseudomonas aeruginosa. Infect Immun, 2003. 71(7): p. 4059-66.
70. Rahme, L.G., et al., Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci U S A, 2000. 97(16): p. 8815-21.
71. Rahme, L.G., et al., Common virulence factors for bacterial pathogenicity in plants and animals. Science, 1995. 268(5219): p. 1899-902.
72. Lee, D.G., et al., Genomic analysis reveals that Pseudomonas aeruginosa virulence is combinatorial. Genome Biol, 2006. 7(10): p. R90.
73. Palmer, K.L., L.M. Aye, and M. Whiteley, Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J Bacteriol, 2007. 189(22): p. 8079-87.
74. Altschul, S.F. and E.V. Koonin, Iterated profile searches with PSI-BLAST--a tool for discovery in protein databases. Trends Biochem Sci, 1998. 23(11): p. 444-7.
75. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997. 25(17): p. 3389-402.
76. Jayaraman, K., et al., Polymerase chain reaction-mediated gene synthesis: synthesis of a gene coding for isozyme c of horseradish peroxidase. Proc Natl Acad Sci U S A, 1991. 88(10): p. 4084-8.
77. Subramaniam, L. and Shriniwas, Rapid diagnosis of Pseudomonas aeruginosa infection by demonstration of pyocyanin & fluorescein. Indian J Med Res, 1985. 81: p. 561-6.
78. Essar, D.W., et al., Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol, 1990. 172(2): p. 884-900.
79. Filiatrault, M.J., et al., Identification of Pseudomonas aeruginosa genes involved in virulence and anaerobic growth. Infect Immun, 2006. 74(7): p. 4237-45.
80. Wehmhoner, D., et al., Inter- and intraclonal diversity of the Pseudomonas aeruginosa proteome manifests within the secretome. J Bacteriol, 2003. 185(19): p. 5807-14.
81. Towbin, H., T. Staehelin, and J. Gordon, Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. 1979. Biotechnology, 1992. 24: p. 145-9.
82. He, J., et al., The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc Natl Acad Sci U S A, 2004. 101(8): p. 2530-5.
83. Lesic, B., et al., Quorum sensing differentially regulates Pseudomonas aeruginosa type VI secretion locus I and homologous loci II and III, which are required for pathogenesis. Microbiology, 2009. 155(Pt 9): p. 2845-55.
84. Overhage, J., et al., Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J Bacteriol, 2008. 190(8): p. 2671-9.
85. Chakraborty, S., et al., Two-component PhoB-PhoR regulatory system and ferric uptake regulator sense phosphate and iron to control virulence genes in type III and VI secretion systems of Edwardsiella tarda. J Biol Chem, 2011. 286(45): p. 39417-30.
86. Perez-Miranda, S., et al., O-CAS, a fast and universal method for siderophore detection. J Microbiol Methods, 2007. 70(1): p. 127-31.
87. Lau, G.W., et al., The role of pyocyanin in Pseudomonas aeruginosa infection. Trends Mol Med, 2004. 10(12): p. 599-606.