研究生: |
劉家志 Chia-Chih Liu |
---|---|
論文名稱: |
建構兩階段決策樹演算法以增進半導體晶粒最佳化設計之研究 Construct Two-Phase Decision Tree for Chip Size Optimization to Empower Design for Manufacturing |
指導教授: |
簡禎富
Chen-Fu Chien |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 65 |
中文關鍵詞: | 可製造性設計 、生產力 、晶粒數量 、資料挖礦 、決策樹 、成本效益分析 |
外文關鍵詞: | Design for manufacturing, Productivity, Gross die per wafer, Data mining, Decision tree, Cost-effective analysis |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了增加競爭優勢,晶圓製造廠需要藉由增加每片晶圓上晶粒的數量來提昇生產力以達到降低平均生產成本的目的。目前已發展出許多最佳化的晶圓曝光演算法來提升每片晶圓上晶粒的數量,然而每片晶圓上晶粒的數量會受到晶粒的大小所影響,包括晶粒的長度、寬度以及面積。但是在晶粒設計的階段並沒有考慮到所設計的晶粒形狀大小對於之後在製造階段所造成的曝光影響。本研究整合晶圓製造及設計兩端以可製造性設計提供較佳的晶粒大小設計建議來改善整體的晶圓製造效率,針對特殊的空間性資料,提出一個兩階段的決策樹演算法,找出每片晶圓上晶粒的數量和晶粒大小形狀之間的關係,並萃取出其中的規則來建立設計建議系統以供晶粒設計者參考,此兩階段決策樹演算法可提高預測準確度並降低樹的複雜性,讓使用規則之搜尋過程更加有效率。
以此決策樹演算法為基礎,建立一個晶粒設計最佳化的分析架構,並以一半導體晶圓製造廠轉換後的實際資料作為驗證,可建議出最佳晶粒設計來最大化晶粒數量並同時降低生產成本以提高晶圓製造廠的產出。
In order to enhance the competitive advantages of wafer fabs, it is crucial for wafer fabs to increase the number of gross dies per wafer to reduce average die cost through productivity improvement. However, gross die number is influenced by die size in design phase, while the existing size of integrated circuit die was designed without considering the effect on wafer throughput in fabrication phase. This research aims to bridge the gap between design and wafer exposure by providing design advice with optimal feature size of integrated circuit device in the design phase so as to improve the overall wafer effectiveness in fabrication. In particular, a two-phase decision tree algorithm for die size optimization is developed to construct the rules between the numbers of gross dies per wafer and mask utilization to the die feature including length, width, and area. Without losing generality, an empirical study has been done for validation by using transformed data from a fab in Taiwan. The results show practical viability, in which the IC designer can easily use these extracted rules to design optimal integrated circuit die size for maximizing the gross die number per wafer and reducing the fabrication cost at the same time.
鄭仁傑 (2003),以混和決策樹方法分析有相互關係之半導體資料,國立清華大學工業工程與工程管理研究所碩士論文。
賴彥中 (2005),發展主幹式決策樹法則以提昇半導體良率之研究-以DRAM廠為實證,國立清華大學工業工程與工程管理研究所碩士論文。
Backus, P., Janakiram, M., Mowzoon, S., Runger, C., and Bhargava, A. (2006), “Factory cycle-time prediction with a data-mining approach,” IEEE Transactions on Semiconductor Manufacturing, Vol. 19, No. 2, pp. 252-258.
Berry, M. and Linoff, G. (1997), Data Mining Techniques for Marketing, Sales and Customer Support, John Wiely and Sons, New York.
Biggs, D., Ville, B., and Suen, E. (1991), “A method of choosing multiway partitions for classification and decision trees,” Journal of applied Statistics, Vol. 18, No. 1, pp. 49-62.
Braha, D. and Shmilovici, A. (2002), “Data mining for improving a cleaning process in the semiconductor industry,” IEEE Transactions on Semiconductor Manufacturing, Vol.15, No. 1, pp. 91-101.
Breiman, L., Friedman, J. H, Olshen, R. J., and Stone, C. J. (1984), Classification and regression Trees, Belmont, CA, Wadsworth.
Chien, C. and Chen, C. (2007), “A novel timetabling algorithm for a furnace process for semiconductor fabrication with constrained waiting and frequency-based setups,” OR Spectrum, Vol. 29, No. 3, pp. 391-419.
Chien, C. and Chen, L. (2008), “Data mining to improve personnel selection and enhance human capital: A case study in high-technology industry,” Expert systems with Applications, Vol. 34, pp. 280-290.
Chien, C., Hsiao, A., and Wang, I., (2004), “Constructing semiconductor manufacturing performance indexes and applying data mining for manufacturing data analysis,” Journal of the Chinese Institute of Industrial Engineers, Vol. 21, No. 4, pp. 313-327.
Chien, C., Hsu, C., and Chen, C. (1999), “An Iterative Cutting Procedure for Determining the Optimal Wafer Exposure Pattern,” IEEE Transactions on Semiconductor Manufacturing, Vol. 12, No. 3, pp. 375-377.
Chien, C., Hsu, C., and Den, J. (2001), “A Cutting Algorithm for Optimizing the Wafer Exposure Pattern,” IEEE Transactions on Semiconductor Manufacturing, Vol. 14, No. 2, pp. 157-161.
Chien, C., and Hsu, C. (2006), “A novel method for determining machine subgroups and backups with an empirical study for semiconductor manufacturing,” Journal of Intelligent Manufacturing, Vol. 17, pp. 429-440.
Chien, C., Hsu, C., Chou, H., and Lin, C. (2006), “Overall Wafer Effectiveness (OWE): A Novel Industry Standard for Wafer Productivity,” Proceedings of International Symposium on Semiconductor Manufacturing 2006, 25-27 September, Tokyo, Japan, pp.317-320.
Chien, C., and Hsu, C. (2007), “Hybrid data mining approach for pattern extraction from wafer bin map to improve yield in semiconductor manufacturing,” International Journal of Production Economics, Vol.107, pp. 88-103.
Chien, C., Lin, D., Peng, C., and Hsu, C. (2001), “Developing data mining framework and methods for diagnosing semiconductor manufacturing defects and an empirical study of wafer acceptance test data in a wafer fab,” Journal of the Chinese Institute of Industrial Engineers, Vol. 18, No. 4, pp. 37-48.
Chien, C., Wang, W., and Cheng, J. (2007), “Data mining for yield enhancement in semiconductor manufacturing and an empirical study,” Expert systems with Applications, Vol. 33, pp. 192-198.
Dirk K. de Vries (2005), “Investigation of Gross Die per Wafer Formulas,” IEEE Transactions on Semiconductor Manufacturing, Vol. 18, No. 1, pp. 136-139.
Fan, C., Guo, R., Chen, A., Hsu, K., and Wei, C. (2001), “Data mining and fault diagnosis based on wafer acceptance test and in-line manufacturing data,” Proceedings of International Symposium on Semiconductor Manufacturing 2001, pp.171-174.
Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996), “From data mining to knowledge discovery: An overview,” Advanced in Knowledge Discovery and data mining, pp.1-36.
Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996), “The KDD process for extracting useful knowledge from volumes of Data,” Communication of ACM, Vol. 39, No.11, pp. 27-34.
Feelders, A., Daniels, H., and Holsheimer, M. (2000), “Methodological and practical aspects of data mining,” Information and Management, Vol. 37, pp. 271-281.
Ferris-Prabhu, A. (1989), “An Algebraic Expression to Count the Number of Chips on a Wafer,” IEEE Circuits and Devices Magazine, pp. 37-39.
Gandner, M. and Bieker, J. (2000), “Data mining solves tough semiconductor manufacturing problem,” Proceedings of Knowledge Discovery and Data Mining 2000.
Han .J. and Kamber, M. (2001), Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers
Harding, J., Shahbaz, M., Srinivas, and Kusiak, A. (2006), “Data Mining in Manufacturing: A Review,” Journal of Manufacturing Science and Engineering, Vol. 128, pp. 969-976.
Kass, G. (1980), “An exploratory technique for investigating large quantities of categorical data,” Applied Statistics, Vol. 29, No. 2, pp. 119-127.
Koppenhoefer, B., Wuerthner, S., Ludwig, L., Rosenstiel, W., Kuge, H., Hummel, M., and Federl, P. (1997), “Analysis of electrical test data using a neural network approach,” IEEE/SEMI Advanced Semiconductor Manufacturing Conference, pp. 37-41.
Kusiak, A. and Kurasek, C. (2001), “Data mining of printed –circuit board defects,” IEEE Transactions on Robotics and Automation, Vol. 17 No. 2, pp. 191-196.
Sewell, H. (1994), “Step and scan: the maturing technology”, Proceedings of SPIE: Optical/Laser Microlithography Ⅷ, Vol.2440, pp. 49-60
Mieno, F., Sat, Y., Shibuya, K., Odagiri, H., Tsuda, and Take, R. (1999), “Yield improvement using data mining system,” Proceedings of International Symposium on Semiconductor Manufacturing 1999, pp. 391-394.
Mingers, J. (1989), “An empirical comparison of selection measures for decision-tree induction,” Machine Learning, Vol. 3, No. 4, pp.319-342.
Morgan, J. and Sonquist, J. (1963), “Problems in the analysis of survey data: and a proposal,” J. Amer. Statist. Ass., Vol. 58, pp. 415-434.
National Technology Roadmap for Semiconductors: Technology Needs, 1997 Edition, Semiconductor Industry Association.
Quinlan, J. (1993a), C4.5: Programs for Machine Learning, Morgan Kanufmann, San Francisco, California.
Tsuda, H., Shiri, H., Takagi, O., and Take, R. (2000), “Yield analysis and improvement by reducing manufacturing fluctuation noise,” Proceedings of International Symposium on Semiconductor Manufacturing 2000, pp. 249-252.
Fukagawa, Y., Shinano, Y., Wada, T., and Nakamori, M. (2005), “Optimum Placement of a Wafer on a Rectangular Chip Grid,” 6th World Congress of Structural and Multidisciplinary Optimization.
Zant, P. (1997), Microchip Fabrication, McGraw-Hill.
Zwart, G., Brink, M. van den, Groege, R., Stariasaputra, D., Baselmans, J., Butler, H., Schoot, J. van, and Klerk, J. De (1997), “Performance of a step and scan system for DUV lithography”, Proceedings of SPIE: Optical/Laser Microlithography Ⅹ, Vol.3051, pp.817-829.