研究生: |
簡正華 Chien, Cheng-Hua |
---|---|
論文名稱: |
跨資料庫情況下之臉部表情及年齡分類 Research on Cross-database Problem for Facial Expression Recognition and Age Classification |
指導教授: |
許秋婷
Chiou-Ting Hsu |
口試委員: |
廖弘源
林嘉文 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 35 |
中文關鍵詞: | 跨資料庫 、傳遞學習 |
外文關鍵詞: | cross-database, transfer learning |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現有的機器學習方法中,大多假設所有處理的資料為相互獨立且具有相同分佈的情況。然而,在實際的生活應用上,我們從網路或其他方式所蒐集到的資料並不一定符合這種假設,使得一般機器學習方法在針對不同資料庫的情況下做處理時會得到較差的效果,此類問題稱為跨資料庫情況下的問題。近年來,傳遞學習(transfer learning)方法被認為能有效的解決跨資料庫所造成的問題,因此在此篇論文中,我們將利用傳遞學習,並考慮在低維度空間上表現出的具有鑑別力的資訊,建立一個新的傳遞學習架構。最後實驗部分以跨資料庫情況下的表情辨識以及年齡分類來驗證我們所提出之方法的成果,由結果可看出我們所提出的架構不論在表情辨識或年齡分類的實驗下,皆比未處理跨資料庫問題的方法好,也優於現有的傳遞子空間學習法(transfer subspace learning)。
Most machine learning methods assumed training and test sets are independent and identically distributed, and may have degraded performance in practical applications since training and test sets are usually not independent and identically distributed. This is called cross-database problem. The ability of transfer learning has been identified to be helpful to solve the cross-database problem. In this thesis, we propose a novel transfer learning framework to utilize transfer learning and consider the discriminate information presented in the low-dimensional feature space. In experiment, we evaluate the effectiveness of our method on cross-database facial expression recognition and age classification. Our experiment shows that, our proposed framework outperforms conventional non-transferred subspace learning methods and most existing transfer subspace learning methods in both facial expression recognition and age classification.
[1] X. Wu, V. Kumar, J.R. Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.J. McLachlan, A.F.M. Ng, B. Liu, P.S. Yu, Z.-H. Zhou, M. Steinbach, D.J. Hand, and D. Steinberg, “Top 10 Algorithms in Data Mining,” Knowledge and Information Systems, vol. 14, no. 1, pp. 1-37, 2008.
[2] Q. Yang and X. Wu, “10 Challenging Problems in Data Mining Research,” Int’l J. Information Technology and Decision Making, vol. 5, no. 4, pp. 597-604, 2006.
[3] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.
[4] J. Huang, A. Smola, A. Gretton, K.M. Borgwardt, and B. Schӧlkopf, “Correcting Sample Selection Bias by Unlabeled Data,” Proc. 19th Ann. Conf. Neural Information Processing Systems, 2007.
[5] M. Sugiyama, S. Nakajima, H. Kashima, P.V. Buenau, and M. Kawanabe, “Direct Importance Estimation with Model Selection and its Application to Covariate Shift Adaptation,” Proc. 20th Ann. Conf. Neural Information Processing Systems, Dec. 2008.
[6] J. Blitzer, R. McDonald, and F. Pereira, “Domain Adaptation with Structural Correspondence Learning,” Proc. Conf. Empirical Methods in Natural Language, pp. 120-128, July 2006.
[7] S.J. Pan, J.T. Kwok, and Q. Yang, “Transfer Learning via Dimensionality Reduction,” Proc. 23rd Assoc. for the Advancement of Artificial Intelligence (AAAI) Conf. Artificial Intelligence, pp. 677-682, July 2008.
[8] S. Si, D. Tao, and B. Geng, “Bregman Divergence-Based Regularization for Transfer Subspace Learning,” IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 7, pp. 929-942, 2010.
[9] Y. Su, Y. Fu, Q. Tian, and X. Gao, “Cross-Database Age Estimation Based on Transfer Learning,” Proceedings of International Conference on Acoustics, Speech and Signal Processing, pp. 1270-1273, 2010.
[10] Haibin Yan, Marcelo H. Ang Jr, and Aun Neow Poo, “Cross-Dataset Facial Expression Recognition,” IEEE International Conference on Robotics and Automation, 2011.
[11] Bingbing Ni, Shuicheng Yan, Ashraf A. Kassim, “Learning a Propagable Graph for Semisupervised Learning: Classification and Regression,” IEEE Trans. Knowl. Data Eng. 24(1): 114-126, 2012
[12] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews, “The Extended Cohn-Kanade Dataset (CK+): A Complete Expression Dataset for Action Unit and Emotion-Specified Expression,” IEEE Conf. Computer Vision and Pattern Recognition Workshops, 2010.
[13] M. J. Lyons, S. Akamatsu, M. Kamachi, and J. Gyoba, “Coding Facial Expressions with Gabor Wavelets,” IEEE Intl. Conf. Automatic Face and Gesture Recognition, pp.200-205, 1998.
[14] The Taiwanese Facial Expression Image Database, http://bml.ym.edu.tw/~download/html/news.htm
[15] The FG-NET Aging Database, http://www.fgnet.rsunit.com/
[16] K. Ricanek and T. Tesafaye, “MORPH: A Longitudinal Image Database of Normal Adult Age-Progression,” IEEE Int’l Conf. on Automatic Face and Gesture Recognition, pp. 341-345, 2006.
[17] Y. C. Su, “Bayesian Age Estimation Using Facial Feature Projection form Uncertain Label,” Master Thesis, National Tsing-Hua University, 2009.