簡易檢索 / 詳目顯示

研究生: 程德恩
Cheng, Te-En
論文名稱: 功率源頻率對大氣電漿束之影響
Driving Frequency Effects on the Characteristics of Atmospheric Pressure Plasma Jets
指導教授: 寇崇善
Kou, Chwung-Shan
口試委員: 王兆恩
周賢鎧
寇崇善
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 100
中文關鍵詞: 功率源操作頻率大氣電漿
外文關鍵詞: Driving frequency, atmospheric pressure plasma
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗之研究目的為探討操作頻率對大氣電漿束系統之影響。實驗的設備為實驗室自製的可變頻功率源和實驗室研發線型大氣電漿束。以氦氣為放電氣體,改變功率源頻率範圍,從10 MHz到20 MHz,隨著操作頻率的增加可以觀察到以下幾種現象:(1)電漿的崩潰電壓從256 V降低至204 V,(2)維持α模式放電的最高電漿密度從0.798×〖10〗^12 〖cm〗^(-3)上升至2.218×〖10〗^12 〖cm〗^(-3)以及電流從0.125 A提高至0.224 A,(3)放電模式轉換前的鞘層厚度從0.348 mm減少為0.257 mm,(4)電漿功率為25 W時電子激發溫度從0.535 ev降為0.316 ev。綜合以上結果,提升功率源的頻率,有助於提升電漿的品質、改善放電效率以及能使大氣電漿束系統有更廣泛的應用空間。


    The study was to investigate the driving frequency effects on the characteristics of atmospheric plasma jets system. The discharge gas is the helium. We change the power source frequency range from 10 MHz to 20 MHz. As the driving frequency is increased, we can observe the several phenomena. (1) gas breakdown voltage from 256 V down to 204 V, (2) plasma density from 0.798×〖10〗^12 〖cm〗^(-3) rose to 2.218×〖10〗^12 〖cm〗^(-3) and increase the current from 0.125 A to 0.224 A when the plasma state at highest α mode discharge, (3) sheath thickness decreased from 0.348 mm to 0.257 mm before discharge mode transition, (4) the electron excitation temperature dropped from 0.535 ev 0.316 ev when the plasma power of 25 W. Collectively, these results suggest that the high driving frequency help to improve the quality of plasma, enhance discharge efficiency, and make the atmospheric plasma jets systems have a wider application space.

    第一章 緒論 1.1 前言 1.2 大氣電漿源簡介 1.3 研究目的 第二章 實驗與量測設備系統 2.1 可變頻功率源系統 2.1.1系統設計與架構 2.1.2功率放大器的設計 2.1.3電路設計 2.1.4功率放大器的製作與測試 2.1.5未來發展:提高輸出功率達1000 W 2.2 大氣電漿源實驗與量測設備系統 2.2.1大氣電漿系統 2.2.2量測設備系統 第三章 實驗原理與分析方法 3.1大氣壓下氣體的放電原理 3.1.1氣體崩潰機制 3.1.2產生均勻放電的方法 3.1.3大氣射頻電容式耦合電漿源的兩種放電模式 3.2電漿理論模型 3.3發射光譜強度分析 3.4 電子平均吸收能量 3.5電子激發溫度計算 第四章 頻率對大氣電漿系統影響之結果與討論 4.1實驗方法 4.2頻率對功率傳遞效率分析 4.3線型大氣電漿特性分析 4.3.1線型大氣電漿束輝光放電現象 4.3.2操作頻率對電漿放電特性之影響 4.3.3操作頻率對電漿特性之影響 4.4電漿光譜分析 4.4.1不同操作頻率下He的特徵譜線 4.4.2不同操作頻率下N2和N2+的特徵譜線 4.4.3不同操作頻率下電子激發溫度 4.5操作頻率改變電漿特性之原因 第五章 結論 參考資料

    [1]M. Goldman and N. Goldman, “Corona discharges,” in Gaseous Electronics vol. 1: New York, 1978.
    [2]J. S. Chang, P. A. Lawless, and T. Yamamoto, "Corona Discharge Processes," IEEE Transactions on Plasma Science, vol. 19, pp. 1152-1166, Dec 1991.
    [3]M. Goldman and R. S. Sigmond, "Corona and Insulation," IEEE Transactions on Electrical Insulation, vol. 17, pp. 90-105, 1982.
    [4]M. Hur and S. H. Hong, "Comparative analysis of turbulent effects on thermal plasma characteristics inside the plasma torches with rod- and well-type cathodes," Journal of Physics D-Applied Physics, vol. 35, pp. 1946-1954, Aug 21 2002.
    [5]P. Fauchais and A. Vardelle, "Thermal plasmas," IEEE Transactions on Plasma Science, vol. 25, pp. 1258-1280, Dec 1997.
    [6]U. Kogelschatz, "Filamentary, patterned, and diffuse barrier discharges," IEEE Transactions on Plasma Science, vol. 30, pp. 1400-1408, Aug 2002.
    [7]B. Eliasson and U. Kogelschatz, "Modeling and Applications of Silent Discharge Plasmas," IEEE Transactions on Plasma Science, vol. 19, pp. 309-323, Apr 1991.
    [8]J. Y. Jeong, S. E. Babayan, V. J. Tu, J. Park, I. Henins, R. F. Hicks, et al., "Etching materials with an atmospheric-pressure plasma jet," Plasma Sources Science & Technology, vol. 7, pp. 282-285, Aug 1998.
    [9]J. Y. Jeong, S. E. Babayan, A. Schutze, V. J. Tu, J. Park, I. Henins, et al., "Etching polyimide with a nonequilibrium atmospheric-pressure plasma jet," Journal of Vacuum Science & Technology A, vol. 17, pp. 2581-2585, Sep-Oct 1999.
    [10]魏孝寬, 射頻大氣電漿束之研究. 台灣: 國立清華大學物理系博士論文, 民國98年7月.
    [11]S. K. Karkari and A. R. Ellingboe, "Effect of radio-frequency power levels on electron density in a confined two-frequency capacitively-coupled plasma processing tool," Applied Physics Letters, vol. 88, Mar 6 2006.
    [12]P. C. Boyle, A. R. Ellingboe, and M. M. Turner, "Independent control of ion current and ion impact energy onto electrodes in dual frequency plasma devices," Journal of Physics D-Applied Physics, vol. 37, pp. 697-701, Mar 7 2004.
    [13]袁帝文, 王岳華, 謝孟翰, and 王弘毅, 高頻通訊電路設計. 台灣: 高立圖書有限公司, 2000.
    [14]T. L. Floyd, Electronic Devices Conventional Current Version, Eighth ed. Pearson education, 2008.
    [15]Philip Semiconductors, "Application note a wideband linear power amplifier for 300 W PEP with 2 MOS transistors BLF177," 1998.
    [16]Philip Semiconductors, "Application note a wideband 30 W push-pull amplifier with two MOS transistors BLF244," 1998.
    [17]Philip Semiconductors, "Power tansformers for the frequency range of 30-80 MHz," 1998.
    [18]Philip Semiconductors, "Dsign of HF wideband power transformers,"1998.
    [19]D. M. Pozar, Microwave Engineering, 4 ed. New York: WILEY, 2011.
    [20]木宗正, 高頻電路設計實例. 台灣: 全華科技圖書股份有限公司, 1989.
    [21]J. Sevick, Transmission Line Transformers, 4 ed.: SciTech Publishing, 2001.
    [22]Boylestad, Introductory Circuit Analysis. PRENTICE HALL, 2008.
    [23]P. Semiconductors, "Application note combining units for a 1 kW wideband HF amplifier," ed, 1998.
    [24]Y.P.Raizer, Gas Discharge Physics. New York: Springer-Verlag, 1991.
    [25]X. Yang, M. Moravej, G. R. Nowling, S. E. Babayan, J. Panelon, J. P. Chang, et al., "Comparison of an atmospheric pressure, radio-frequency discharge operating in the alpha and gamma modes," Plasma Sources Science & Technology, vol. 14, pp. 314-320, May 2005.
    [26]P. Vidaud, S. M. A. Durrani, and D. R. Hall, "Alpha-Rf and Gamma-Rf Capacitative Discharges in N-2 at Intermediate Pressures," Journal of Physics D-Applied Physics, vol. 21, pp. 57-66, Jan 14 1988.
    [27]E. Amanatides and D. Mataras, "Frequency variation under constant power conditions in hydrogen radio frequency discharges," Journal of Applied Physics, vol. 89, pp. 1556-1566, Feb 1 2001.
    [28]C. S. Kou, Physics of Plasma Physics. 國立清華大學物理系:離子體物理講義.
    [29]F. F. Chen, Introduction to Plasma Physics. Nwe York and London: Plenum Press, 1984.
    [30]M. A. Liebermann and A. L. Lichtenberg, Principles of Plasma Discharges and Materials processing. New York: Wiley, 1994.
    [31]J. J. Shi, X. T. Deng, R. Hall, J. D. Punnett, and M. G. Kong, "Three modes in a radio frequency atmospheric pressure glow discharge," Journal of Applied Physics, vol. 94, pp. 6303-6310, Nov 15 2003.
    [32]S. Y. Moon, D. B. Kim, B. Gweon, and W. Choe, "Driving frequency effects on the characteristics of atmospheric pressure capacitive helium discharge," Applied Physics Letters, vol. 93, Dec 1 2008.
    [33]J. L. Walsh, F. Iza, and M. G. Kong, "Atmospheric glow discharges from the high-frequency to very high-frequency bands," Applied Physics Letters, vol. 93, Dec 22 2008.
    [34]J. W. Coburn and M. Chen, "Optical-Emission Spectroscopy of Reactive Plasmas - a Method for Correlating Emission Intensities to Reactive Particle Density," Journal of Applied Physics, vol. 51, pp. 3134-3136, 1980.
    [35]R. E. Walkup, K. L. Saenger, and G. S. Selwyn, "Studies of Atomic Oxygen in O-2+Cf4 Rf Discharges by 2-Photon Laser-Induced Fluorescence and Optical-Emission Spectroscopy," Journal of Chemical Physics, vol. 84, pp. 2668-2674, Mar 1 1986.
    [36]S. Zarrabian, C. Lee, and K. H. Guenther, "Emission-Spectroscopy of Reactive Low-Voltage Ion Plating for Metal-Oxide Thin-Films," Applied Optics, vol. 32, pp. 5606-5611, Oct 1 1993.
    [37]Y. Zhang, X. H. Wen, and W. H. Yang, "Excitation temperatures of atmospheric argon in dielectric barrier discharges," Plasma Sources Science & Technology, vol. 16, pp. 441-447, Aug 2007.
    [38]N. U. Rehman, F. U. Khan, M. A. Naveed, and M. Zakaullah, "Determination of excitation temperature and vibrational temperature of the N(2)(C(3)Pi(u), nu ') state in Ne-N(2) RF discharges," Plasma Sources Science & Technology, vol. 17, May 2008.
    [39]N. Spiliopoulos, D. Mataras, and D. E. Rapakoulias, "Power dissipation and impedance measurements in radio-frequency discharges," Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 14, pp. 2757-2765, Sep-Oct 1996.
    [40]L. Sansonnens, A. Pletzer, D. Magni, A. A. Howling, C. Hollenstein, and J. P. M. Schmitt, "A voltage uniformity study in large-area reactors for RF plasma deposition," Plasma Sources Science & Technology, vol. 6, pp. 170-178, May 1997.
    [41]G. Nersisyan, T. Morrow, and W. G. Graham, "Measurements of helium metastable density in an atmospheric pressure glow discharge," Applied Physics Letters, vol. 85, pp. 1487-1489, Aug 30 2004.
    [42]G. Nersisyan and W. G. Graham, "Characterization of a dielectric barrier discharge operating in an open reactor with flowing helium," Plasma Sources Science & Technology, vol. 13, pp. 582-587, Nov 2004.
    [43]C. S. Lee and J. T. Suen, "A study of the N-2(+) first negative system induced by H+, H-2(+), H-3(+), He+, and Ne+ on N-2," Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, vol. 140, pp. 273-280, May 1998.
    [44]N. Gherardi, G. Gouda, E. Gat, A. Ricard, and F. Massines, "Transition from glow silent discharge to micro-discharges in nitrogen gas," Plasma Sources Science & Technology, vol. 9, pp. 340-346, Aug 2000.
    [45]J. Pons, E. Moreau, and G. Touchard, "Asymmetric surface dielectric barrier discharge in air at atmospheric pressure: electrical properties and induced airflow characteristics," Journal of Physics D-Applied Physics, vol. 38, pp. 3635-3642, Oct 7 2005.
    [46]Y. Takeuchi, H. Mashima, M. Murata, S. Uchino, and Y. Kawai, "Characteristics of VHF-excited SiH4 plasmas using a ladder-shaped electrode," Surface & Coatings Technology, vol. 142, pp. 52-55, Jul 2001.
    [47]J. Park, I. Henins, H. W. Herrmann, and G. S. Selwyn, "Gas breakdown in an atmospheric pressure radio-frequency capacitive plasma source," Journal of Applied Physics, vol. 89, pp. 15-19, Jan 1 2001.
    [48]Y.P.Raizer, M.N.Shneider, and N.A.Yatsenko, Radio Frequency Cpacitive Discharges: Boca Raton, 1995.
    [49]J. J. Shi and M. G. Kong, "Expansion of the plasma stability range in radio-frequency atmospheric-pressure glow discharges," Applied Physics Letters, vol. 87, Nov 14 2005.
    [50]D. W. Liu, J. J. Shi, and M. G. Kong, "Electron trapping in radio-frequency atmospheric-pressure glow discharges," Applied Physics Letters, vol. 90, Jan 22 2007.
    [51]W. Schwarzenbach, A. A. Howling, M. Fivaz, S. Brunner, and C. Hollenstein, "Sheath impedance effects in very high frequency plasma experiments," Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 14, pp. 132-138, Jan-Feb 1996.
    [52]J. Perrin, J. Schmitt, C. Hollenstein, A. Howling, and L. Sansonnens, "The physics of plasma-enhanced chemical vapour deposition for large-area coating: industrial application to flat panel displays and solar cells," Plasma Physics and Controlled Fusion, vol. 42, pp. B353-B363, Dec 2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE