簡易檢索 / 詳目顯示

研究生: 顏英竹
Yan, Ying-Chu
論文名稱: 超高功率磁旋行波管放大器之理論探討
Theoretical Study of Ultra-High Power Gyrotron Traveling-Wave Tube Amplifier
指導教授: 朱國瑞
Chu, Kwo-Ray
張存續
Chang, Tsun-Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 51
中文關鍵詞: 磁旋管
外文關鍵詞: gyrotron
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本論文為超高功率磁旋行波管放大器之理論探討,磁旋行波管放大器的操作原理是基於對流不穩定(convective instability),當輸入的波一邊向前傳遞一邊和電子束交互作用,使得波的振幅隨著軸前進而增大,而有了放大的效果。然而,波導管中的絕對不穩定(absolute instability)不需要輸入訊號,當管內雜訊以返波內部回饋機制(internal feedback) ,即在原地將雜訊放大,而影響放大器的入射波的波源。因此,抑制磁旋放大器中的絕對不穩定,增加穩定操作電流,為設計超高功率磁旋行波管放大器之首要問題。
    為了抑制磁旋放大器中的絕對不穩定,我們延續過去的分佈式損耗(distributed loss)的方法,大幅增高管壁損耗以及利用輸出端線圈電流(output coil)製造高梯度磁場。除此之外,我們探討各參數對於絕對不穩定的影響,來抑制在W-band頻段TE01模式的磁旋放大器中的絕對不穩定,以增加操作電流來增高輸出功率,並提高橫截面速度對軸向速度的比值alpha,提升電子和電磁波之交互作用,提升效率。最後,此設計之計算結果達到飽和輸出功率488kW,效率45dB,增益48.8%的超高功率磁旋行波管放大器。


    摘要 第一章 緒論 1.1 電子迴旋脈射(ECM)物理機制…………………………… 2 1.2 磁旋放大器之歷史與發展………………………………… 5 1.3 超高功率磁旋放大器之設計……………………………… 8 第二章 非線性理論計算公式 2.1 場方程式…………………………………………………… 9 2.2 電子動力學………………………………………………… 14 2.3 初始電子分佈……………………………………………… 20 2.4 邊界條件…………………………………………………… 22 2.5 輸出端線圈之磁場公式…………………………………… 24 2.6 理論計算流程圖…………………………………………… 26 第三章 磁旋放大器中高次模的絕對不穩定性 3.1 磁旋放大器中高次模的絕對不穩定性…………………… 27 3.2 模式TE01、TE02、TE21、TE11場的特性………………… 29 3.3 各參數對起振電流 之影響……………………………… 32 3.4 磁旋行波放大器於穩定區間之計算結果………………… 43 第四章 結論 結論……………………………………………………………… 48 參考文獻………………………………………………………… 49

    參考文獻

    [1]K. R. Chu, “ Overview of research on the gyrotron traveling-wave amplifier ” IEEE Trans. Plasma Sci., vol. 30, pp. 903–908, June 2002.
    [2]K. R. Chu, “ Overview of research on the gyrotron traveling-wave amplifier ” IEEE Trans. Plasma Sci., vol. 30, pp. 903–908, June 2002.
    [3]K. L. Felch, B. G. Danly, H. R. Jory, K. E. Kreischer,
    W. Lawson, B.Levush, and R. J. Temkin, “Characteristics
    and applications offast-wave gyrodevices,” Proc.
    IEEE,vol.87, pp. 752–781, May 1999.
    [4]J. L. Seftor, V. L. Granatstein, K. R. Chu, P. Sprangle, and M. E. Read,“The electron cyclotron maser as a high power traveling-wave amplifier of millimeter waves,” IEEE J. Quantum Electron., vol.QE-15, pp. 848–853, 1979.
    [5]J. L. Seftor, A. T. Drobot, and K. R. Chu, “An investigation of a magnetron injection gun suitable for use in cyclotron resonance masers,” IEEE Trans. Electron Devices, vol. ED-26, pp. 1609–1616, 1979.
    [6]L. R. Barnett, K. R. Chu, J. M. Baird, V. L. Granatstein, and A. T. Drobot, “Gain, saturation, and bandwidth measurements of the NRL gyrotron traveling wave amplifier,” in IEDM Tech. Dig., 1979, pp.
    [7]R. S. Symons, H. R. Jory, and S. J. Hegji, “An experimental gyro-TWT,” in IEDM Tech. Dig., 1979, pp. 676–679.
    [8]P. E. Ferguson and R. S. Symons, “A C-band gyro-TWT,” in IEDM Tech. Dig., 1980, pp. 310–313.
    [9]R. S. Symons, H. R. Jory, S. J. Hegji, and P. E. Ferguson, “An experimental gyro-TWT,” IEEE Trans. Microwave Theory Tech., vol. MTT-29, pp. 181–184, 1981.
    [10]Y. Y. Lau and K. R. Chu, “Gyrotron traveling wave amplifier—A proposed wideband fast wave amplifier,” Int. J. Infrared Millim.Waves, vol.2, pp. 415–425, 1981.
    [11]K. R. Chu, Y. Y. Lau, L. R. Barnett, and V. L. Granatstein, “Theory of a wideband distributed gyrotron traveling wave amplifier,” IEEE Trans. Electron Devices, vol. ED-28, pp. 866–871, 1981.
    [12]L. R. Barnett, Y. Y. Lau, K. R. Chu, and V. L. Granatstein, “An experimental wideband gyrotron traveling-wave amplifier,” IEEE Trans. Electron Devices, vol. ED-28, pp. 872–875, 1981.
    [13]L. R. Barnett, L. H. Chang, H. Y. Chen, K. R. Chu, Y. K. Lau, and C.C. Tu, “Absolute instability competition and suppression in a millimeter-wave gyrotron traveling-wave tube,” Phys. Rev. Lett., vol.63, pp. 1062–1065, 1989.
    [14]K. R. Chu, L. R. Barnett, W. K. Lau, L. H. Chang, and H. Y. Chen,“A wide-band millimeter-wave gyrotron traveling-wave amplifier experiment,” IEEE Trans. Electron Devices, vol. 37, pp. 1557–1560, June1990.
    [15]K. R. Chu, L. R. Barnett, W. K. Lau, L. H. Chang, and C. S. Kou,“Recent development in millimeter wave gyro-TWT research at NTHU,” in IEDM Tech. Dig., 1990, pp. 699–702.
    [16]K. R. Chu, L. R. Barnett, H. Y. Chen, S. H. Chen, Ch. Wang, Y. S. Yeh, Y. C. Tsai, T. T. Yang, and T. Y. Dawn, “Stabilizing of absolute instabilities in gyrotron traveling-wave amplifier,” Phys. Rev. Lett., vol. 74, pp. 1103–1106, 1995.
    [17]K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H. Chen, and T. T. Yang, “Ultra high gain gyrotron traveling wave amplifier,” Phys. Rev. Lett., vol. 81, pp. 4760–4763, 1998.- 42
    [18]K. R. Chu, H. Y. Chen, C. L. Hung, T. H. Chang, L. R. Barnett, S. H.Chen, T. T. Yang, and D. Dialetis, “Theory and experiment of ultrahigh-gain gyrotron traveling-wave amplifier,” IEEE Trans.
    Plasma. Sci., vol. 27, pp. 391–404, Apr. 1999.
    [19]H. H. Song, D. B. McDermott, Y. Hirata, L. R. Barnett, C. W. Domier, H. L. Hsu, T. H. Chang, W. C. Tsai, K. R. Chu, and N. C. Luhmann, Jr., Phys. Plasmas 11, 2935 (2004).
    [20]K. R. Chu and A. T. Lin, “Gain and bandwidth of the gyro-TWT and CARM amplifier,” IEEE Trans. Plasma Sci., vol. 16, pp. 90–104, Feb. 1988.
    [21]K. R. Chu and J. L. Hirshfield, Phys. of Fluids 21, 461 (1978).
    [22]K. R. Chu, Rev. Modern Phys. 76, 2004 (April issue, in press).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE