簡易檢索 / 詳目顯示

研究生: 黃聖勛
Sheng-Hsun Huang
論文名稱: 以微波加熱化學氣相沉積法在450°C成長奈米碳管之研究
Carbon nanotubes grown at 450[]C by microwave heating chemical vapor deposition
指導教授: 黃金花
Jin-Hua Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 126
中文關鍵詞: 奈米碳管化學氣相沉積法低溫
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自從奈米碳管(carbon nanotubes :CNTs)在1991年被Iijima博士 發現後,奈米碳管的製造和特性即引起很大的研究興趣。因此也就衍生了許多新的應用。由於奈米碳管具低起始電場與高電流密度的特性,故目前以應用於場發射顯示器(CNTs-FED)為主。而一般顯示器之陰極均選用玻璃基板以節省成本,若要直接將奈米碳管成長於玻璃基板上,成長溫度必須低於玻璃基板的軟化點(strain point ) (~550℃)。由過去的文獻中可知,利用合金催化劑可有效的降低奈米碳管成長溫度,故本實驗目標是將奈米碳管成長溫度降低至500□C以下,找出較佳之成長條件,以便能使用於薄膜CNTs-FED之製程中,並製作出符合大眾需求之大尺寸商用顯示面板。
    本實驗以微波加熱化學氣相沉積法(Microwave Heating chemical vapor deopsition:MH-CVD)成長碳奈米材料,利用E-gun蒸鍍機,分別鍍上鐵鎳合金、鎳金屬及鈷金屬當作催化劑成長奈米碳管於矽基板上,並以鈦為緩衝層以期能得到較佳場發射特性。藉由SEM和拉曼光譜分析碳膜的結構,接著再進行場發射特性量測,所使用的量具為Keitherley 237。
    發現以Ni (6 nm)/Ti (16 nm)結構,在700 W(520□C)下成長40分鐘,所得到的碳管有著最佳的場發射特性,其中起始電場為0.74 V/□m(10 □A/cm2)以及最大電流密度22.5 mA/cm2,並且在5.3 V/□m到達門檻電流密度(threshold current density:10 mA/cm2);此外,利用此結構在450□C成長120分鐘所得的碳管,其起始電場為1.98 V/□m,場發射電流密度在 1 mA/cm2時只需6 V/□m大小的電場,利用此多層結構可在450℃低溫下成長出場發射顯示器所需之奈米碳管場發射子。


    第一章 序論 1.1 簡介 ……………………………………………….……...……….…………….1 1.2 研究動機 ………………………………………….…..……………..………….2 1.3 奈米碳管的各項性質 ………………………..….…………………..………….3 1.4 奈米碳管的場發射性質 ……………………………….……………………….6 1.5 不同材料的場發射特性 ………………………..…….………………………...7 1.6 參考文獻 ...………………………………………………………..…………….8 第二章 文獻回顧 2.1 低溫成長奈米碳管之製程 ……………………………………………………11 2.1.1 熱式化學氣相沉積法 …………………………………………………….11 2.1.2 電漿輔助式化學氣相沉積法 ………………………………………….....16 2.2 拉曼光譜(Raman spectroscopy) ……………………………………………....21 2.2.1 何謂拉曼光譜 …………………………………………………………….21 2.2.2 拉曼光譜儀裝置 ………………………………………………………….23 2.2.3 拉曼光譜的應用 ………………………………………………………….23 2.2.4 拉曼光譜在奈米碳管上的應用 ………………………………………….24 2.3 場發射理論 …………….……………………………………………………...29 2.3.1 何謂場發射 ……………………………………………………………….29 2.3.2 奈米碳管之場發射特性 ………………………………………………….30 2.4 參考文獻 ………………………………………………………………………35 第三章 研究方法與實驗步驟 3.1 研究方法 ………………………………………………………………………37 3.2 實驗步驟 ………………………………………………………………………37 3.2.1 基板之清潔 ……………………………………………………………….38 3.2.2 催化劑金屬之蒸鍍 ……………………………………………………….38 3.2.3 成長系統 ………………………………………………………………….39 3.2.4 成長奈米碳管之實驗參數 ……………………………………………….41 3.2.5 分析方法與實驗儀器 …………………………………………………….42 第四章 實驗結果與討論 4.1 鎳膜厚度對成長奈米碳管的影響 ……………………………………….…...45 4.1.1 在700 W (520□C)時,鎳膜厚度對奈米碳管之影響 …………………..…45 4.1.2 在600 W (475□C)時,鎳膜厚度對奈米碳管之影響 ……………………..52 4.1.3 在550 W (450□C)時,鎳膜厚度對奈米碳管之影響 ………..……………57 4.1.4 在500 W (425□C)時,鎳膜厚度對奈米碳管之影響 ……………………..61 4.1.5 較佳鎳膜厚度之選擇 …………………………………………………….63 4.2 鈷膜厚度對成長奈米碳管的影響 ……………………………………………87 4.2.1 在700 W (520□C)時,鈷膜厚度對奈米碳管之影響 ……………………..87 4.2.2 在600 W (475□C)時,鈷膜厚度對奈米碳管之影響 ……………………..94 4.2.3 在550 W (450□C)時,鈷膜厚度對奈米碳管之影響 ……………………..98 4.2.4 較佳鈷膜厚度之選擇 …………………………………………………….99 4.3 鐵鎳合金薄膜對成長奈米碳管的影響 ……………………………………..117 4.3.1在600 W (475□C)時,合金催化劑結構對奈米碳管之影響 ……………..117 4.3.2在550 W (450□C)時,合金催化劑結構對奈米碳管之影響 ……….…….118 4.4 參考文獻 ……………………………………………………………………..124 第五章 結論 5.1鎳膜厚度對成長奈米碳管的影響 ……………………………………………125 5.2鈷膜厚度對成長奈米碳管的影響 ……………….…………………………...125 5.3合金薄膜厚度對成長奈米碳管的影響 ………………………………………126 5.4較佳的成長條件 ………………………………………………………………126

    [1] S. Iijima, Nature 354 (1991) 56.
    [2] 陳彥旭, 清華大學碩士論文 (2002).
    [3] Ray H. Baughman, Anvar A. Zakhidov, Walt A. de Heer, Science 297 (2002) 787.
    [4] S. Iijima, and T. Ichihashi, , Nature 363 (1993) 603.
    [5] T. W. Ebbesen, P. M. Ajayan, Nature 358 (1992) 16.
    [6] C. Journet, W. K. Master, P. Bernier, A. Loiseau, M. L. d. I Chapelle, S. Lefrant, P. Deniard, R. Lee, J. E. Fischer, Nature 388 (1997) 756.
    [7] A. Thess, R. Lee, P. Nikdaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, Kim. S. G., A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomaken, J. E. Fisher, R. E. Smalley, Science 273 (1996) 483.
    [8] Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal,
    P. N. Provencio, Science 282 (1998) 1105.
    [9] C.J. Lee, D.W. Kim, T.J. Lee, Y.C. Choi, Y.S. Park, Y.H. Lee, W.B. Choi, N.S. Lee, K.-S. Park, J.M. Kim, Chem. Phys. Lett., to be printed in 1999.
    [10] K. Hernadi, A. Fonseca, J.B. Nagy, D. Bernaerts, J. Riga, A. Lucas, . Synthetic Metals 77 (1996) 31.
    [11] L.C. Qin, D. Zhou, A.R. Krauss, D.M. Gruen, Appl. Phys. Lett. 72. (1998) 3437.
    [12] S. Fan, M. Chapline, N. Franklin, T. Tombler, A. Cassell, and H. Dai, Science 283 (1999) 512.
    [13] (a)J. Kong, H. T. Soh, A. Cassell, C. F. Quate, and H. Dai, Nature (London) 395 (1998) 878; (b) N. R. Franklin, Y. Li, R. J. Chen, A. Javey, and H. Dai, Appl. Phys. Lett. 79 (2001) 4571.
    [14] B. Q. Wei, R. Vajtai, Y. Jung, J. Ward, Y. Zhang, G. Ramanath, and P. M. Ajayan, Nature (London) 416 (2002) 495.
    [15] G. Gu, G. Philipp, X. Wu, M. Burghard, A. M. Bittner, and S. Roth, Adv. Func. Mater. 11 (2001) 295.
    [16] Yih-Ming Shyu, Franklin Chau-Nab-Hong, Diamond Relat. Mater. 10 (2001) 1241.
    [17] Jyh-Ming Ting, Kun-Hou Liao, Chem. Phys. Lett. 396 (2004) 469.
    [18] K. Kamada, T. Ikuno, S. Takahashi, T. Oyama, T. Yamamoto, M. Kamizono, S. Ohkura, S. Honda, M. Katayama, T. Hirao, K. Oura, Appl. Surf. Sci. 212 (2003) 383.
    [19] "High Resolution TEM Observations of Single-Walled Carbon Nanotubes", Tara Spires and R. Malcolm Brown, Jr. Department of Botany, The University of Texas at Austin, Austin,Tx., 78713 (1996).
    [20] Jeroen W. G. Wilder, Liesbeth C. Venema, Andrew G. Rinzler, Richard E. Smalley, Cees Dekker, Nature 391 (1998) 59-62.
    [21] Teri Wang Odom, Jin-Lin Huang, Philip Kim, Charles M. Lieber, Nature 391(1998) 62-64.
    [22] Andreas Thess, Roland Lee, Pavel Nikolaev, Hongjie Dai, Pierre Petit, Jerome Robert, Chunhui Xu, Young Hee Lee, Seong Gon Kim, Andrew G. Rinzler, Daniel T. Colbert, Gustavo Scuseria, David Tomek, John E. Fischer, Richard E. Smalley, Science 273 (1996) 483.
    [23] Guanghua Gao, Tahir Cagin, William A. Goddard III, "Energetics, Structure, Mechanical and Vibrational Properties of Single Walled Carbon Nanotubes (SWNT)" (1997).
    [24] David Tomànek.
    [25] C. Dekker, "Carbon Nanotubes as Molecular Quantum Wires", Physics Today, p22, May (1999)
    [26] Stefan Frank et al., Science 280 (1998) 1744.
    [27] Stefano Sanvito, Young-Kyun Kwon, David Tomek, Colin J. Lambert., Phys. Rev. Lett. 84 (2000) 1974.
    [28] Lecture given at Michigan State University by Phaedon Avouris, a nanotube researcher at the IBM labs (2000).
    [29] Jianwei Che, Tahir Cagin, William A. Goddard III, "Thermal Conductivity of Carbon Nanotubes".
    [30] Herndez and Angel Rubio, "Nanotubes: Mechanical and Spectroscopic Properties" (1999).
    [31] Min-Feng Yu, Bradley S. Files, Sivaram Arepalli, Rodney S. Ruoff, Phys. Rev. Lett. 84 (2000) 5552.
    [32] Y. Cheng, O. Zhou, C. R. Physique 4 (2003) 1021–1033.
    [33] Yih-Ming Shyu, Franklin Chau-Nab-Hong, Diamond Relat. Mater. 10 (2001) 1241.
    [34] Yih-Ming Shyu, Franklin Chau-Nab-Hong, Mater. Chem. Phys. 72 (2001) 223.
    [35] In Taek Han, Ha Jin Kim, Young-Jun Park, Naesung Lee, Jae Eun Jang, Jung Woo Kim, Jae Eun Jung, and Jong Min Kim, Appl. Phys. Lett.81 (2002) 2070.
    [36] K. B. K. Teo, M. Chhowalla, S. B. Lee, D. G. Hasko, H. Ahmed, G. A. J.Amaratunga, W. I. Milne, G. Pirio, P. Legagneux, and D. Pribat, Proceedings of the 2001 Materials Research Society fall meeting, Boston, 2001 (in press).
    [37] S. Hofmann, C. Ducati, J. Robertson, Appl. Phys. Lett. 83 (2003) 135.
    [38] S. Hofmann, B. Kleinsorge, C. Ducati, A.C. Ferrari, J. Robertson, Diamond Relat. Mater. 13 (2004) 1171.
    [39] B. Million, J. Kucera, P. Michalicka, Mater. Sci. Eng. A 190 (1995) 247.
    [40] Y. Shiratori, H. Hiraoka, Y. Takeuchi, S. Itoh, M. Yamamoto, Appl. Phys. Lett. 82 (2003) 2485.
    [41] Douglas A, Skoog and James J. Leary, Principles of instrumental analysis, Fourth edition, Harcourt. Brace Joranovich,1992.
    [42] Hiura, H.,Ebbesen, T.W., Tanigaki, H., Chem. Phys. Lett. 202 (1993) 509.
    [43] P. C. Eklund, J. M. Holden and R. A. Jishi,Carbon 33 (1995) 959.
    [44] J. W. Gadzuk and E. W. Plummer, Rev. Mod. Phys. 45 (1973) 487.
    [45]Chernozatonskii LA, Gulyaev YV, Kosakovskaya ZY, Sinitsyn NI, Torgashov GV, Zakharchenko YF, Fedorov EA, Valchuk VP. Chem. Phys. Lett. 233 (1995) 63.
    [46] Chernozatonskii LA, Kosakovskaya ZJ, Kiselev AN, Kiselev NA. Chem. Phys. Lett. 228 (1994) 1.
    [47] De Heer WA, Chatelain A, Ugarte D. Science 270 (1995) 1179.
    [48] Wang QH, Setlur AA, Lauerhaas JM, Dai JY, Seelig EW,and an Chang RPH. A nanotube-based field-emission flat panel display. Appl. Phys. Lett. 72 (1998) 2912.
    [49] Saito Y, Hamaguchi K, Uemura S, Uchida K, Tasaka Y, Ikazaki F al, Appl. Phys. A 67 (1998) 95.
    [50] Dimitrijevic S, Withers JC, Mammana VP, Monteiro OR, Appl. Phys. Lett. 67 (1999) 95.
    [51] Jean-Marc Bonard, Mirko Croci, Christian Klinke, Ralph Kurt, Olivier Noury, Carbon 40 (2002) 1715.
    [52] Y. Y. Wei, Gyula Eres, V. I. Merkulov, D. H. Lowndes, Appl. Phys. Lett. 78 (2001) 1394.
    [53] C. C. Chuang, J. H. Huang, W. J. Chen, C. C. Lee, Y. Y. Chang, Diamond Relat. Mater. 13 (2004) 1012.
    [54] Sergey N. Zaretskiy, Young-Kyu Hong, Dong Han Ha, Ji-Hyun Yoon, Jinwoo Cheon, Ja-Yong Koo, Chem. Phys. Lett. 372 (2003) 300.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE