簡易檢索 / 詳目顯示

研究生: 林佳民
Chia-Min Lin
論文名稱: 含奈米複合材料三明治結構之彎曲與破裂特性
Bending and Fracture Properties of Sandwich Structure with MWNTs/Polymer Nanocomposites as Core Materials
指導教授: 葉孟考
Meng-Kao Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 98
中文關鍵詞: 三明治結構奈米複合材料彎曲破裂
外文關鍵詞: Sandwich Structure, Nanocomposites, Bending, Fracture
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來有許多複合材料產品,以三明治結構之方式進行設計,使其達到有效減輕結構重量、增加結構機械特性、防火與隔音效果等目的,因此三明治結構之複合材料具有極高之研究價值。三明治複合材料之表面材料通常選用強度較佳之材料,如金屬或纖維強化複合材料,以保有結構本身之剛性;核心材料則選用添加填充物如多壁奈米碳管或中空玻璃珠之高分子複合材料,以增加結構之動態特性或減輕結構本身之重量。本計畫所探討之三明治結構,表面材料為纖維強化複合材料,核心材料則為添加奈米碳管之高分子複材。
    本研究將以三點彎曲測試方法研究三明治結構複合材料之機械特性,探討不同碳纖維疊層角度之表面材料和改變核心材料之碳管含量對彎曲強度與破壞機制之影響。由於有限元素分析需材料常數,因此也進行材料拉伸實驗,由實驗結果探討三明治結構複合材料之機械特性,以有限元素分析模擬結果與三明治結構三點彎曲測試結果比較。文中也研究含有裂縫之多壁奈米碳管高分子複材,討論改變碳管含量對其破裂韌度之影響;以含缺口拉伸試驗(Compact Tension Test),探討多壁奈米碳管/環氧樹脂之Mode I破裂特性,並利用非對稱四點彎曲試驗(Asymmetric Four-Point Bending Test),最後實驗結果與有限元素分析結果比較。


    Composite materials have advantages of high specific strength, high specific stiffness, and can be used in many industries, such as musical instrument, acoustical tile, fire wall, sports equipment, aerospace and vehicle applications. Moreover composite products are used in sandwich structures to reduce the weight of structure, and to increase the mechanical properties, sound insulation and fire prevention properties 0f structure in recent years. In this paper, the mechanical properties of sandwich structure made by graphite face laminates and core material made by multi-walled carbon nanotubes (MWNTs) reinforced polymer were investigated.
    In the experiment, the three-point bending test was used to measure the mechanical properties of sandwich structure. The influences of carbon fiber orientation, in the face laminates, and content of MWNTs, in polymer reinforced nanocomposite core material, on the bending strength of sandwich structure were discussed in this paper. In analysis, the finite element method was used to obtain the numerical values of mechanical properties of sandwich structures. The Mode I and II fracture toughness of MWNTs/Polymer nanocomposites were investigated, and the effects of MWNTs content in the nanocomposites were evaluated. The Mode I fracture toughness was tested using compact tension specimens. For determination of the Mode II fracture toughness, the asymmetric four-point bending test were used. The experimented results were compared with ours obtained from the finite element analysis.

    中文摘要…………………………………………………………… i 英文摘要…………………………………………………………… ii 致謝………………………………………………………………… iii 目錄………………………………………………………………… iv 圖表目錄…………………………………………………………… vi 第一章 緒論……………………………………………………… 1 1.1研究動機…………………………………………… 1 1.2文獻回顧…………………………………………… 1 1.3研究目標…………………………………………… 6 第二章 有限元素與理論分析…………………………………… 7 2.1有限元素分析……………………………………… 7 2.2三明治結構之有限元素分析………………………9 2.3三點彎曲理論公式…………………………………11 2.4破裂韌度……………………………………………12 2.5含裂縫奈米複合材料之有限元素分析……………14 2.6拉伸實驗數據分析…………………………………15 第三章 實驗設備與程序…………………………………………17 3.1 實驗設備…………………………………………17 3.1.1製作複材疊層板之實驗設備……………………17 3.1.2 製作高分子複合材料之實驗設備………………17 3.1.3製作含裂縫高分子複材之實驗設備……………18 3.1.4 量測材料常數之實驗設備………………………18 3.1.5三明治結構三點彎曲所需之實驗設備……………19 3.1.6含缺口拉伸試驗之實驗設備………………………19 3.1.7非對稱四點彎曲試驗之實驗設備…………………19 3.1.8光學顯微鏡和掃瞄式電子顯微鏡之實驗設備……19 3.2 複合材料疊層板試片製作…………………………20 3.3 高分子奈米複合材料試片製作……………………20 3.4三明治結構試片製作…………………………………22 3.5含裂縫試片製作…………………………………… 22 3.6 材料常數量測…………………………………………23 3.6.1 軸向楊氏係數和波松比……………………………24 3.6.2 橫向楊氏係數……………………………………24 3.6.3 剪力模數…………………………………………24 3.6.4 高分子複材之楊氏係數與波松比………………25 第四章 結果與討論…………………………………………………26 4.1拉伸試驗結果…………………………………………26 4.1.1碳纖維複材疊層板拉伸試驗結果…………………26 4.1.2多壁碳管/環氧樹脂複合材料拉伸試驗結果……27 4.2三明治結構參數探討…………………………………28 4.2.1不同疊層角度之表面材料三明治結構實驗結果…28 4.2.2不同碳管含量之核心材料三明治結構實驗結果…30 4.3 含裂縫奈米複合材料………………………………30 4.3.1 張開型(Mode I)緊湊拉伸實驗結果……………31 4.3.2 滑移型(Mode II) 非對稱四點彎曲實驗結果…32 4.4 有限元素分析結果…………………………………33 4.4.1 奈米複合材料Mode I有限元素分析……………33 4.4.2 奈米複合材料Mode II有限元素分析……………34 4.4.3 三明治結構有限元素分析………………………34 第五章 結論…………………………………………………………37 參考文獻……………………………………………………………38 圖表整理……………………………………………………………43

    1. C. A. Steevens and N. A. Flect, “Material Selection in Sandwich Beam Construction,” Scripta Materialia, Vol. 50, pp. 1335-1339, 2004.
    2. I. M. Daniel and J. L. Abot, “Fabrication, Testing and Analysis of Composite Sandwich Beams,” Composites Science and Technology, Vol. 60, pp. 2455-2463, 2000.
    3. T. Hobbiebrunken, M. Hojo, T. Adachi, C. D. Jong, and B. Fiedler, “Evaluation of Interfacial Strength in CF/Epoxies Using FEM and In-Situ Experiments,” Composites:Part A, Vol. 37, pp. 2248-2256, 2006.
    4. F. Mujika, “On the Difference Between Flexural Moduli Obtained by Three-Point and Four-Point Bending Tests,” Polymer Testing, Vol. 25, pp. 214-220, 2006.
    5. J. Kim and S. R. Swanson, “Design of Sandwich Structures for Concentrated Loading, Composite Structures,” Vol. 52, pp. 365-373, 2001.
    6. U. K. Vaidya, S. Pillay, S. Bartus, C. A. Ulven, D. T. Grow and B. Mathew, “Impact and Post-Impact Vibration Response of Protective Metal Form Composite Sandwich Plates,” Materials Science and Engineering A, Vol. 428, pp. 59-66, 2006.
    7. N. Pokharel and M. Mahendran, “Experimental Investigation and Design of Sandwich Panels Subject to Local Buckling Effects,” Journal of Constructional Steel Research, Vol. 59, pp. 1533-11552, 2003.
    8. V. P. Veedu and L. A. Carlsson, “Finite-element Buckling Analysis of Sandwich Columns Containing a Face/Core Debond,” Composite Structures, Vol. 69, pp. 143-148, 2005.
    9. F. Avilès and L. A. Carlsson , “Elastic Foundation Analysis of Local Face Buckling In debonded Sandwich Columns,” Mechanics of Materials, Vol. 37, pp. 1026-1034, 2004.
    10. Y. Frostiga and O. T. Thomsenb, “Non-linear Behavior of Delaminated Unidirectional Sandwich Panels with Partial Contact and a Transversely Flexible Core,” International Journal of Non-Linear Mechanics, Vol. 40, pp. 633-651, 2005.
    11. V. Vadakke and L. A. Carlsson, “Experimental Investigation of Compression Failure of Sandwich Specimens with Face/Core Debond,” Composites:Part B, Vol. 35, pp. 583-590, 2004.
    12. 謝宗翰, 多壁奈米碳管補強高分子樹脂之複材樑與三明治結構動態特性分析, 國立清華大學動力機械工程研究所碩士論文, 2006.
    13. R. F. Gibson, Principles of Composite Material Mechanics, McGraw-Hill, New York, 1994.
    14. K. T. Lau, S. Q. Shi and H. M. Cheng, “Micro-Mechanical Properties and Morphological Observation on Fracture Surfaces of Carbon Nanotube Composites Pre-Treated at Different Temperatures,” Composites Science and Technology, Vol. 63, pp. 1161–1164, 2003.
    15. K. T. Lau and D. Hui, “Effectiveness of Using Carbon Nanotubes as Nano-Reinforcements for Advanced Composite Structure,” Letters to the Editor / Carbon, Vol. 40, pp. 1065-1066, 2002.
    16. J. B. Bai and A. Allaoui, “Effect of the Length and the Aggregate Size of MWNTs on the Improvement Efficiency of the Mechanical and Electrical Properties of Nanocomposites—Experimental Investigation,” Composites:Part A, Vol. 34, pp. 689–694, 2003.
    17. D. Qian, E. C. Dickey, R. Andrews and T. Rantell, “Load Transfer and Deformation Mechanisms in Carbon Nanotube-Polystyrene Composites,” Applied Physics Letters, Vol. 76, pp. 2868-2870, 2000.
    18. 劉家豪, 多壁奈米碳管/酚醛樹脂複合材料之機械性質研究, 國立清華大學動力機械工程研究所碩士論文, 2004.
    19. T. J. Lu, Z. C. Xia and J. W. Hutchinson, “Delamination of Beams under Transverse Shear and Bending,” Materials Science and Engineering, Vol. A188, pp. 103-112, 1994.
    20. A. Lyckegarrd and O. T. Thomsen, “Nonlinear Analysis of a Curved Sandwich Beam Joined with a Straight Sandwich Beam,” Composites:Part B, Vol. 37, pp. 101-107, 2006.
    21. M. H. Kao and M. K. Yeh, “Delaminatied Plates under Pure Bending and Local Buckling,” Proceedings of the 18th National Conference on Theoretical and Applied Mechanics, Hsinchu, Taiwan, ROC, Vol. 3, pp. 89-96, 1994.
    22. W. S. Burton and A.K. Noor, “Elastic and Viscoelastic Foundation Model,” Finite Element in Analysis and Design, Vol. 26, pp. 213-227, 1997.
    23. J. Hohe and W. Becker, “Assessment of the Delamination Hazard of the Core Face Sheet Bond in Structural Sandwich Panels,” International Journal of Fracture, Vol. 109, pp. 413-432, 2001.
    24. Y. B. Cho and R. C. Averill, “First-order Zig-zag Sublamination Plate Theory and Finite Element Model for Laminated Composite and Sandwich Panels,” Composite Structures, Vol. 50, pp. 1-15, 2000.
    25. 王文毅, 複合三明治結構膠黏層的黏彈性質分析, 國立中正大學機械工程研究所碩士論文, 2002.
    26. X. P. Han, S. L. Han and L. Yu, “A Study on Dynamic Fracture Toughness of Composite Laminates at Different Temperatures,” Composites Science and Technology, Vol. 63, pp. 155-159, 2003.
    27. S. Choi and B. V. Sankar, “Fracture Toughness of Transverse Cracks in Graphite/Epoxy Laminates at Cryogenic Conditions,” Composites:Part B, Vol. 38, pp. 193-200, 2007.
    28. Y. Shindo, D. Shinohe, S. Kumagai and K. Horiguchi, “Analysis and Testing of Mixed-mode Interlaminar Fracture Behavior of Glass/Cloth Epoxy Laminates at Cryogenic Temperatures,” Transactions of the ASME, Vol. 127, pp. 468-475, 2005.
    29. S. G. Kalarikkal, B. V. Sankar and P. G. Ifju, “Effect of Cryogenic Temperature on the Fracture Toughness of Graphite/Epoxy Composites,” Journal of Engineering Materials and Technology, Vol. 128, pp. 151-157, 2006.
    30. K. Morioka and Y. Tomita, “Effect of Lay-up Sequence on Mechanical Properties and Fracture Behavior of Advanced CFRP Laminate Composite,” Materials Science and Engineering, Vol. A234-236, pp. 778-781, 1997.
    31. H. D. Wagner, O. Lourie, Y. Feldman and R. Tenne, “Stress-induced Fragmentation of Multiwall Carbon Nanotubes in a Polymer Matrix,” Applied Physical Letters, Vol. 72, pp. 188-190, 1998.
    32. H. D. Wagner, O. Lourie and X. F. Zhou, “Macrofragmentation and Microfragmentation Phenomena in Composite Materials,” Composites:Part A, Vol. 30, pp. 59-66, 1999.
    33. O. Lourie and H. D. Wagner, “Evidence of Stress Transfer and Formation of Fracture Clusters in Carbon Nanotube-based Composites,” Composite Science and Techonology, Vol. 59, pp. 975-977, 1999.
    34. A. Aliyu and I. M. Daniel, “Effects of Strain Rate on Delamination fracture Toughness of Graphite/Epoxy,” ASTM STP, Vol. 876, pp. 336-348, 1985.
    35. Z. Petrossian and M. R. Wisnom, “Prediction of Delamination Initiation and Growth from Discontinuous Plies Using Interface Elements,” Composites:Part A, Vol. 29, pp. 503-515, 1998.
    36. A. B. de Morais, M. F. de Moura, A. T. Marques and P. T. de Castro, “Mode I Interlaminar Fracture of Carbon/Epoxy Cross-Ply Composites,” Composites Science and Technology, Vol. 62, pp. 679–686, 2002.
    37. S. H. Wu, F. Y. Wang, C. C. M. Ma, W. C. Chang, C. T. Kuo, H. C. Kuan and W. J. Chen, “Mechanical, Thermal and Morphological Properties of Glass Fiber and Carbon Fiber Reinforced Polyamide-6 and Polyamide-6/Clay Nanocomposites,” Material Latters, Vol. 49, pp. 327–333, 2001.
    38. 何施瑩, 多壁奈米碳管強化環氧樹脂的製程與破壞韌性, 元智大學機械工程研所論文, 2007.
    39. W. Araki, D. Asahi, T. Adachi and A. Yamaji, “Time–Temperature Dependency of Mode II Fracture Toughness for Bisphenol A Type Epoxy Resin,” Journal of Applied Polymer Science, Vol. 96, pp. 51–55, 2005.
    40. F. H. Gojny, M. H. G. Wichmann, B. Fiedler and K. Schulte, “Influence of Different Carbon Nanotubes on the Mechanical Properties of Epoxy Matrix Composites – A Comparative Study,” Composites Science and Technology, Vol. 65, pp. 2300–2313, 2005.
    41. S. J. Park, H. J. Jeong and C. Nah, “A Study of Oxyfluorination of Multi-walled Carbon Nanotubes on Mechanical Interfacial Properties of Epoxy Matrix Nanocomposites,” Materials Science and Engineering A, Vol. 385, pp. 13–16, 2004.
    42. S. Ganguli, M. Bhuyan and L. Allie, “Effect of Multi-walled Carbon Nanotube Reinforcement on the Fracture Behavior of a Tetrafunctional Epoxy,” Journal of Materials Science, Vol. 40, pp. 3593-3595, 2005.
    43. R. J. Melcher and W. S. Johnson, “Mode I Fracture Toughness of an Adhesively Bonded Composite–Composite Joint in a Cryogenic Environment,” Composites Science and Technology, Vol. 67, pp. 501-506, 2007.
    44. D. Moore, A. Pavan and J. Williams, “Fracture Mechanics Testing Methods for Polymers, Adhesives and composites,” ESIS Publication, Vol. 28, 2001.
    45. K. Y. Volokh and A. Needleman, “ Buckling of Sandwich Beams with Compliant Interfaces,” Computers and Structures, Vol. 80, pp. 1329-1335, 2002.
    46. ANSYS Release 10.0, ANSYS, Inc., PA, 2005.
    47. A. A. Griffth, “The phenomena of rupture and flow in solids,” Philosophical Transcation, Series A, Vol. 221, pp. 163-198, 1920.
    48. J. W. Dally and W. F. Riley, “Experimental Stress Analysis,”New York, McGraw-Hill Inc., 1991.
    49. ASTM C393-00, “Standard Test Method for Flexural Properties of Sandwich Constructions,” Annual Book of ASTM Standards, 2000.
    50. ASTM D5045-99, “Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials,” Annual Book of ASTM Standards, 1999.
    51. K. S. Kim and C. S. Hong, “Delamination Growth in Angle-Ply Laminated Composites,” Journal of Composite Materials, Vol. 20, pp. 423-438, 1986.
    52. M. K. Yeh and C. M. Tan, “Buckling of Elliptically Delaminated Composite plates,” Journal of Composite Materials, Vol. 28, No. 1, pp. 36-52, 1994.
    53. ASTM D3039-00, “Standard Test Method for Tensile Properties of Fiber-Resin Composites,” Annual Book of ASTM Standards, 2000.
    54. ASTM D3518-01, “Standard Practice for Inplane Shear Stress-strain Response of Unidirectional Reinforced Plastics,” Annual Book of ASTM Standards, 2001.
    55. L. A. Carlsson and R. B. Pipes, Experimental Characterization of Advanced Composite Materials, New Jersey, Prentic-Hall, 1987.
    56. ASTM D638-03, “Standard Test Method for Tensile Properties of Plastics,” Annual Book of ASTM Standards, Vol. 8.2, 1982.
    57. 蔡秝凱, 正交性複合材料中裂縫前端的微觀尺度應力強度因子, 國立清華大學動力機械工程研究所碩士論文, 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE